
Proc. of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2024)
1-2 February 2024, Victoria-Seychelles

Simple and Linear Fast Adder of Multiple Inputs
and Its Implementation in a Compute-In-Memory

Architecture
Juan P. Ramı́rez
Jalisco, México

jramirez@binaryprojx.com;
jramirez@ddots.com;

Personal Page: www.binaryprojx.com

Abstract—A Simple and Linear Fast Adder is proposed that
supports parallel addition. Its Compute-In-Memory architecture
maximizes efficiency and performance of operations ranging from
addition to matrix multiplication. The simple and linear topology
of the adder allows for scalability past 64-bit architecture.
Copies of the adder can be connected in parallel to generate
a rectangular grid that performs addition of multiple inputs and
scalar multiplication of two inputs. This grid can be scaled to
support efficient matrix multiplication.

Index Terms—Applied Mathematics, Circuits and Systems, Mi-
croelectronics, VLSI Circuits, Compute-In-Memory, Fast Adder,
Matrix Multiplication

I. INTRODUCTION

An innovative Compute-In-Memory implementation of a
(Patent Pending) Simple and Linear Fast Adder is proposed.
The design is based on a novel set theory, succinctly outlined
to provide a foundation for efficient data representation and
arithmetic circuit design. The primary focus here is on the
practical applications, particularly within the realm of Artifi-
cial Intelligence (AI), where the implications of this proposed
circuit are transformative. The scalable, linear, and simple
topology of the proposed Simple and Linear Fast Adder not
only eases the design and manufacturing process but also
positions it as a faster and more energy-efficient alternative
to conventional adders. These attributes make it particularly
well-suited for applications in AI, where heavy loads of matrix
multiplication are a common computational requirement.

Furthermore, the Compute-In-Memory architecture adds an-
other layer of innovation, enhancing overall system efficiency.
The integration of computation and memory functions in a
seamless manner contributes to faster processing speeds and
reduced data transfer requirements. Beyond AI, the scalability
and efficiency of the proposed circuit have broader applica-
tions in areas that heavily rely on matrix multiplication, such as
signal processing, image and video processing, and scientific
simulations. The simplicity of the circuit’s topology not only
facilitates cost-effective design and manufacturing but also
opens doors for wider adoption across various industries.

In summary, a Compute-In-Memory architecture for a Sim-
ple and Linear Fast Adder is described that is poised to
revolutionize applications in AI and other domains relying on
intensive matrix multiplication. This scalable, cost-effective
design, coupled with enhanced speed and energy efficiency,
positions this circuit as a foundation for many advancements
in the field of computational hardware.

The organization of this proposal is as follows. First, the
historical context of set-theoretic axiomatizations of arith-
metic and analysis is discussed. Then, addition of natural
numbers is described in terms of the proposed set theory.
The construction of natural numbers here proposed can be
generalized to provide a simple and transparent construction
of real numbers that is also compatible with the SLFA. A
more detailed presentation of the set theoretical base, its
extension to real numbers, other theoretical results, and the
SLFA patent description with simulations, are found in [1],
[2]. A series of applications to Computer Science follow from
this set theoretical proposal. Here, we will only discuss a
Simple and Linear Fast Adder for a Compute-In-Memory
architecture, and how it can be used for scalar and matrix
multiplication. Other applications of this set theory include
an analog computing scheme based on the superposition of
coupled waves, a fast derivative approximation compatible
with the SLFA, Homomorphic Encryption, among others.
The theoretical foundation also extends to algebra where
finite functions and permutations are given a natural order
and a Canonical Block Form for Finite Groups is defined
that determines the groups’ automorphisms. In analysis, real
numbers are constructed in a simple and transparent manner
and a fast approximation algorithm is given for calculating
the numerical derivative. A Theory of Types that categorizes
all mathematical objects with the minimum possible type has
applications to Data Structures.

979-8-3503-9452-8/24/$31.00 © 2024 IEEE

II. HILBERT’S AXIOMATIC QUESTIONS AND THE 24TH
PROBLEM

There is a widely held belief that the specific selection of
a framework for natural [3], and real numbers [4], [5], [6],
[7], is inconsequential for the broader field of mathematics. A
canonical set theory has been proposed [1], [2] that produces
transparent proofs and new results tying fundamental areas
of mathematics including group theory, discrete mathematics,
analysis, data types, and addressing Hilbert’s 24th (twenty-
fourth) Problem and Benacerraf’s Identification Problem.
Computer science applications include a linearly scalable cir-
cuit designed for parallel addition and multiplication of scalars,
vectors, and matrices, with significant implications for Area-
Specific Integrated Circuits (ASICs) and other areas reliant
on rapid and low-power vector operations. This In-Memory
architecture, based on a patent-pending Simple and Linear Fast
Adder (SLFA - patent pending), is a direct consequence of the
proposed set theory.

In contemporary mathematics and computer science, it is
widely accepted that the natural number zero (0) is represented
by the empty set ∅. However, since the time of Hilbert
and even in the present, many mathematicians do not find
it necessary to justify the existence of the number 0. It
is widely believed that the nature of numbers is irrelevant;
what matters is their behavior. In his famous list of 23
Problems, Hilbert paid special attention to the philosophical
and practical implications of the Axiomatic Method. Prob-
lems 1, 2, and 6 were axiomatic in nature, focusing on the
Continuum Hypothesis, the consistency and completeness of
arithmetic, and the axiomatization of physics, respectively.
Abundant material on the subject of Hilbert and his Axiomatic
Program is found in [8] and other articles and books from the
same author. In the following decades, a collective effort was
made to address these metamathematical questions through
the formalization of various set theories. Gödel, Turing, and
Church demonstrated the limitations of arithmetical complete-
ness, consistency, and decidability. Gödel’s incompleteness
theorems, based on Peano’s Axioms, shattered illusions of
achieving completeness and consistency. And, it was also
shown that the Continuum Hypothesis and its negation were
both consistent with Zermelo-Fraenkel Set Theory.

Despite the consensus that the choice of axiomatic base for
natural numbers and the specific computable coding of other
structures is irrelevant, foundational definitions have remained
under scrutiny. Philosophers of mathematics, proponents of
structuralism, and set theorists have raised questions about
the possibility of alternative axiomatic systems to Peano
Arithmetic that could address foundational questions in math-
ematics. Benacerraf’s Identification Problem [9], for example,
challenges the notion that numbers are sets. He argues that
sets are defined to exhibit desired properties. Sets are defined
to have the properties we wish them to have. The nature of
numbers is projected onto sets, but that does not imply a
number is a set. For instance, Zermelo-Fraenkel Set Theory
defines 2 = {{∅}} but Von-Neumann Set Theory defines

2 = {∅, {∅}}. Both ways are consistent, and there are in fact
infinitely many ways of defining natural numbers. Benacerraf
concluded that the number 2 was not any set in particular.
Hilbert also analyzed this problem, with a different conceptual
approach. But he was also aware of the confusions this kind
of question would cause in mathematics and thought it was
not prudent to include it in his famous list. He knew that
simply asking these questions was enough of a complication
to mathematics and that his 24th problem [10] could wait. The
problem aimed to develop a theory of the method of proof in
mathematics, exploring the idea that under given conditions,
there can be only one simplest proof. “The 24th problem in
my Paris lecture was to be: Criteria of simplicity, or proof of
the greatest simplicity of certain proofs. Develop a theory of
the method of proof in mathematics in general. Under a given
set of conditions there can be but one simplest proof.”

III. THEORETICAL BACKGROUND

A set theory has been proposed [1], [2] that simplifies proofs
in various fundamental areas of mathematics, and provides
applications in pure and applied mathematics. This set theory
is proposed as a unique canonical set theory that forms
an optimal universe for classical mathematics from number
theory to analysis [1]. The order of natural numbers, and the
operations of addition and multiplication, are defined on the
set of all Hereditarily Finite Sets, HFS, in a novel manner
that treats numbers as sets and not sequences, with important
consequences in the representation and classification of finite
and infinite objects that will not be discussed here [2]. Al-
gebraic invariants are described with results bringing together
set theory, discrete mathematics, number theory and algebraic
structures. The proposed construction of natural numbers is
generalized to provide a simple and transparent construction
of the continuum of real numbers, with a fast approximation
for the numeric derivative that can be implemented with the
SLFA. Infinite data structures are defined in the most efficient
way with the smallest possible data type, using meaningful
and computable codings. In general, all mathematical objects
are well assigned to tree structures.

This paper will focus on the Ackermann Coding which is
a bijection N → HFS, also known as BIT-Predicate [11], that
maps the natural number

∑
i 2

xi to the set {x1, x2, . . . , xn}.
Addition is a special prefix problem which means that each
sum bit is dependent on all equal or lower input bits [12],
[13]. Although solutions to the carry-over delay of the addition
algorithm exist in practice, the problems related to the cir-
cuitry’s complicated topology and gate depth quickly outweigh
the benefits as the number of bits is slightly increased. The
complexity associated to a non-scalable design increases the
cost of design and production. Energy efficiency and delay are
also associated to gate depth.

A. Adding Sets

An addition algorithm for BIT-Predicate is described, as a
finite state machine of logarithmic time, that can be imple-
mented as a Simple and Linear Fast Adder. To add two sets

A,B, form two new sets A′ = A△B and B′ = s(A ∩ B),
where A△B is the symmetric difference. The function s
adds 1 to the elements of its argument. The addition of
these two new sets is the same as the original addition
A ⊕ B = A′ ⊕ B′ because the powers of 2 in A ⊕ B have
only been rearranged. The term A′ consists of the non repeated
powers (symmetric difference). The term B′ is a displacement
of the repeated powers; it is a function of the intersection. In a
finite number of iterations the intersection A(k) ∩B(k) = ∅ is
reduced to the empty set. The final result is A(k+1), because
A⊕B = A(k+1) ⊕B(k+1) = A(k+1) ⊕ s(∅) = A(k+1).

Let us apply this reasoning with an example, calculating
13 + 25 = 38. The addition is rewritten as the sum of sets
A⊕B = {0, 2, 3} ⊕ {0, 3, 4} because 13 = 20 + 22 + 23 and
25 = 20 + 23 + 24. The inputs will be represented with two
side-by-side vectors.

0 0
0 1
1 1
1 0
0 0
1 1

Then, two new columns are formed. The column on the left
will take the value 1 everywhere in the symmetric difference.
The right column will take the value 1 everywhere in the
intersection, but the values need to be displaced one unit
up corresponding to the fact the intersection is representing
addition of two equal powers of 2 and 2n + 2n = 2n+1. This
gives the new columns

0 0
1 1
0 0
1 0
0 1
0 0.

Iterating this step gives the next columns

0 1
0 0
0 0
1 0
1 0
0 0.

In the next iteration the system stabilizes because the
intersection is now the empty set, and if the process is iterated
again it will give the same configuration.

1 0
0 0
0 0
1 0
1 0
0 0.

The process described herein is a finite state machine. A
finite configuration of particles in a column represents a natural

number, and each state is a pair of natural numbers. In general,
the left column of the next state is given by the energy levels
not repeated in the current state. The right column of the next
state is given by a displacement, one level up, of the energy
levels repeated in the current state. A stable state is reached in
a finite number of steps. This happens when the right column
is empty; the result of the sum is given in the left column.
The average number of steps for adding two n-bit numbers
is max(n), while the total number of steps is bounded by n.
The probability of reaching stability in i ≤ n steps is the
probability of obtaining i-many consecutive heads in a trial
of n-many fair coin tosses; the probability of reaching stable
state in i-many steps decreases dramatically as i moves further
from max(n).

B. Addition of Multiple Inputs

A general method for defining the sum of multiple operands
is proposed that has several advantages in hardware implemen-
tation. An algorithm is described that reduces the sum of k
summands to max(k) + 1 summands. Consider the sum of
4-many, 8-bit numbers. Let A = a0a1 · · · a7, B = b0b1 · · · b7,
C = c0c1 · · · c7, D = d0d1 · · · d7.

a7 b7 c7 d7
a6 b6 c6 d6
a5 b5 c5 d5
a4 b4 c4 d4
a3 b3 c3 d3
a2 b2 c2 d2
a1 b1 c1 d1
a0 b0 c0 d0,

where each ai, bi, ci, di takes a value in {0, 1}.
There is a total of four columns so that three bits are

sufficient for counting how many 1’s are contained in a single
row because max(4) + 1 = 2 + 1 = 3. The number of
1’s in each row can be represented in a 3-column grid with
8 + (3− 1) = 10 many rows.

0 0 c′9
0 b′8 c′8
a′7 b′7 c′7
a′6 b′6 c′6
a′5 b′5 c′5
a′4 b′4 c′4
a′3 b′3 c′3
a′2 b′2 c′2
a′1 b′1 0
a′0 0 0

(1)

The elements a′0, b
′
1, c

′
2 will be used to write the number

of 1’s in row 0. The elements a′1, b
′
2, c

′
3 are used to write the

number of 1’s in row 1, and elements a′2, b
′
3, c

′
4 are used to

write the number of 1’s in row 2, etc. This maintains the repre-
sentation of energy-levels and their unit value, while avoiding
any intervention with totals from one row and another. The
three column grid can be reduced to two columns, by iterating
the process. The total number of units in each row of (1) will

be represented with two bits because max(3)+1 = 1+1 = 2.
Addition of the two columns

a′′9 b′′9
a′′8 b′′8
a′′7 b′′7
a′′6 b′′6
a′′5 b′′5
a′′4 b′′4
a′′3 b′′3
a′′2 b′′2
a′′1 b′′1
a′′0 0

is equivalent to the original four-input addition. Elements a′′0
and b′′1 represent the total value of the first row in (1). Elements
a′′1 and b′′2 represent the total value of the second row, elements
a′′2 and b′′3 represent the total value of the third row, etc. An
additional row is not required because row 10, in (1), at most
will contain a single 1, requiring one row.

Let A = 32 = {6}, B = 36 = {2, 5}, C = 22 =
{1, 2, 4}, D = 36 = {2, 5}, E = 26 = {1, 3, 4}, F = 15 =
{0, 1, 2, 3}, G = 15 = {0, 1, 2, 3}, H = 51 = {0, 1, 4, 5}. This
is given by

1 1 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 0 0 0 1 1 1 0
0 1 1 1 0 1 1 0
0 0 1 0 1 1 1 1
0 0 0 0 0 1 1 1.

There can be at most eight objects in each row, so only
four bits are needed to represent the total of number of 1’s
in a single row. This means the new grid has four columns.
There is a total of 3-many 1’s in row 0. This is represented
by placing the sequence of digits 1100 (larger powers are to
the right and smaller powers are to the left so we have 1100
representing 3, instead of 0011) in the bottom most diagonal,
of the new grid.

0
0 0

1 0 0
1 0 0 0.

The next row, row 1 has 5-many 1’s. The sequence of digits
1010 goes in the next diagonal up.

0
1 0

0 0 0
1 1 0 0
1 0 0 0.

There are also 5-many 1’s in row 2, so the sequence 1010
is placed in the next diagonal up.

0
1 0

0 1 0
1 0 0 0
1 1 0 0
1 0 0 0.

Rows 3 and 4 have 3-many 1’s each, so the sequence 1100
is placed in each of the following diagonals up.

0 0 0 0
0 0 0 0
0 1 0 0
1 1 1 0
1 0 1 0
1 0 0 0
1 1 0 0
1 0 0 0.

Row 5 has 4-many 1’s, so the sequence 0010 in the last
diagonal.

0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0
1 1 1 0
1 0 1 0
1 0 0 0
1 1 0 0
1 0 0 0.

These four columns can be reduced to three columns, by
iterating this process. The bottom-most row of the last grid,
has a total of 1 number 1’s so that the sequence 100 is placed
on the bottom diagonal.

0
0 0

1 0 0.

There is a total of 2 number 1’s in the next row, row 1, so
that the sequence 010 is placed on the next diagonal.

0
1 0

0 0 0
1 0 0.

Continuing in this manner gives

0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 1 0
1 1 0
0 0 0
1 1 0
0 0 0
1 0 0.

Using the same method, these three columns are reduced to
two columns, by the same formula max(3) + 1 = 2.

0 0
0 0
0 0
1 0
0 0
0 1
0 1
0 0
0 1
0 0
0 0
1 0.

Unsurprisingly, the method employed for reducing columns
coincides with the Finite State Machine that adds two set num-
bers. The column reduction method will reduce the addition
of two columns to the addition of max(2) + 1 = 1 + 1 = 2
columns, but it will reach a stable state in a finite number of
iterations. In this sense, the Finite State Machine for adding
two numbers is a particular case of a more general FSM that
reduces the addition of k-many columns to the addition of
max(k)+1 columns. The Final result of the four input addition
is equal to 233.

0 0
0 0
0 0
1 0
0 0
1 0
1 0
0 0
1 0
0 0
0 0
1 0.

IV. SIMPLE AND LINEAR FAST ADDER OF TWO INPUTS
(PATENT PENDING)

Traditional adders face the challenge of eliminating propa-
gation delays in an efficient manner. While existing methods
attempt parallel and fast addition, they often incur drawbacks

such as increased area, elevated energy consumption, and
heightened costs in design and manufacturing. Established
approaches like Carry Look-Ahead (CLA) adders and other
fast adders [14], [15], [16], [17] have their circuit complexity,
area and gate count/depth significantly enlarged with each
added bit.

The SLFA has very low gate count and constant depth.
It is compatible with natural numbers, integers, and rational
numbers. Additionally, the SLFA is linear in topology and
linearly scalable. Its architecture is analogous to that of the
box cars of a train. Adding a bit of input is simply adding
a box car. This is true also with the traditional Carry-Over
adders, which also consist of half adders connected in series.
Thus, the SLFA enjoys of the benefits of both types of adders.
It has the simple and linear topology of carry-over adders, but
its performance is also projected to be at least as good as other
fast/parallel adders whose complexity grows fast. Adding a bit
of input to the circuit amounts to connecting a subunit to the
end of the circuit. Each sub unit consists of a half adder and
a 2-bit register.

The Simple and Linear Fast Adder (SLFA) is structured with
n subunits connected in series, where each subunit comprises a
half adder and two memory registers as depicted in Fig. 1. The
registers are double-edge triggered, reading on the rising edge
and writing on the falling edge. Initially, inputs A and B are
stored in registers RA and RB, respectively. Subsequently,
the contents of these registers follow two paths. The inputs
of each specific significant bit undergo ‘XOR’ and ‘AND’
operations. The ‘XOR’ gate outputs the symmetric difference,
which is then directed to register RA in the same significant
bit. The ‘AND’ gate outputs the intersection, sent to register
RB in the next significant bit. A bit shift is applied to the
intersection, representing repeated powers of 2. This iterative
process continues until register RB becomes the zero vector.
The SLFA executes the sum of two numbers in logarithmic
time, on average. Increasing the number of bits is equivalent
to adding one subunit consisting of two memory elements and
one half adder. Gate depth is that of a zero flag of n-bits whose
input are the contents of RB and signals when the input is the
zero vector. Time delay will be shorter and the SLFA will be
more energy efficient because gate depth and instruction set
are constant. The cost of design and production [18] will also
be lower because of its simple and linear topology.

Let us understand this adder with examples. Suppose we
wish to add 3 + 1 = 4. We would first load the inputs by
setting RA = 0011 and RB = 0001. Then, running the SLFA
one iteration will give the new configuration RA = 0010 and
RB = 0010. Running the SLFA again gives RA = 0000
and RB = 0100. The next iteration of the SLFA gives
RA = 0100 and RB = 0000. Then, on the next step, the
process is terminated because RB signals the zero vector.
The complete patent description, detailed examples, figures,
claims, are found in [2].

Fig. 1. A 4-bit SLFA, consisting of 4 subunits connected in series. Each
subunit is made up of a half adder and a 2-bit register. The ‘XOR’ gates
find the symmetric difference, while the intersection is found in the output of
the ‘AND’ gates. A bit shift is applied to the intersection, and the process is
iterated until register RB is the zero vector.

V. COMPUTE-IN-MEMORY IMPLEMENTATION FOR
ADDITION OF MULTIPLE INPUTS

The SLFA circuit, as we will see in this section, can also
be arranged in a rectangular matrix, that is capable of adding
multiple inputs and multiplying two numbers. The size of the
rectangular matrix is also trivially scaled to operate more bits
or inputs. This scalability provides material benefits for matrix
multiplication, which will be discussed in this section. Most
importantly, it represents a transformative solution to the Von
Neumann bottleneck. The SLFA is a linear architecture of
subunits connected in series, with each subunit consisting of
2-bits of memory and a half adder. The rectangular array for
addition of multiple inputs, which will be detailed below, is a
rectangular version of the SLFA. Each node of this rectangular
grid consists of a half adder and a 3-bit memory register. Some
nodes of the same column or row are connected. Processing
is done in one rectangular layer, and memory registers are
in a second, topologically equivalent, layer. Every node in
one layer is connected with the corresponding node in the
other layer. That is to say, layers are connected in the trivial
one-to-one manner. This cuts data migration requirements
because data only has to be moved the distance between layers,
instead of peripheral as in the Von-Neumann Architecture. By
mitigating drawbacks associated with parallel adders and Von
Neumann architecture, the SLFA presents a shift towards more
efficient and versatile computing architectures of unparalleled
efficiency and performance, that can more easily be scaled
past 64-bit architecture. The Written Opinion on patentability
from the International Search Authority (ISA/US) is provided
in the appendix, at the end in Fig. 6.

Consider b-many n-bit SLFAs side by side, as in Fig. 2.
A small set of parallel connections (only nodes from the
same row or column are connected) allow for the rectangular
circuit to perform addition of n-many b-bit numbers. Fig. 2 is
illustrative of the topology of the multiple input adder, but it
is not an accurate depiction of the multiple-input adder. Each
node of Fig. 2 will consist of at least one 3-bit register and
at least one half adder, maintaining the gate count and depth
very low. Every row is a SLFA, and only parallel connections
between nodes of the same row or column are needed. In
a given node, two of the registers are part of the SLFA of
that row. The third memory bit will be referred to as the
principal bit. The principal bits of the nodes store the initial
inputs. The principal bits in a given column represent an input
of b-bits. There is a total of n columns so that the adder
will be able to perform addition of n inputs. There are two
types of connections on nodes of the same row. The first kind
(thinnest lines of Fig. 2) correspond to connections of the
SLFA conforming that row. The second kind (thick lines) is
needed for counting the number of 1’s stored in the principal
bits, by sending the contents of the principal bits to the least
significant bit of the SLFA of that row. Connections between
elements of the same column (thickest lines) correspond to the
diagonal placement of the total number of 1’s in a given row,
of the column reduction algorithm.

Each SLFA will count the number of 1’s in its row. To
achieve this, the contents of the principal bits in a row must
be sent to the least significant bit of register RB in the SLFA
of that row. The objects of a row have to be counted one-by-
one. That is to say, first you send the left-most principal bit of
the row, to register RB0 of the SLFA. Then, you count the next
object, then the next, and so on until you have counted them
all. This is done in parallel, for all rows, so that all rows are
counted simultaneously. Each SLFA can operate independently
and signal process termination individually. This is important
because each row will take a different number of iterations
and each iteration will consist of a different number of
subprocesses, each subprocess taking a different number of
steps, to count how many 1’s are in that row. Once the elements
of a row are counted, the results are stored in register RA of
the SLFA. When all rows have been counted the contents of
registers RA will be sent to their new principal bits. This
is achieved with the connections between nodes of the same
column. The first column is connected with itself. In the next
column, every node will be connected to the next node up. In
the third column, each node will be connected with the second
node up, and so on. These connections on nodes of the same
columns will enable the diagonal placement of the row count.
In each iteration the columns with non-zero entries in their
principal bits are less. This process can be iterated until only
the first column is a non-zero vector in the principal bits.

The first step is to count the number of 1’s in each
row. Given that the SLFAs conforming the rows operate
independently, all rows will be counting simultaneously. Start
by sending the principal bits of the first column, each to
its corresponding register RB0. Then, run the SLFAs (using
thin lines connecting nodes of the same row) so that at the
end of the cycle, registers RA hold the count. Next, send
the contents of the principal bits from the second column to
the least significant bit of their respective SLFA, saving it in
register RB0. This is done using the second kind (thick lines)
of connections on nodes of the same row. Run the SLFAs
again. Register RA of each row holds the count of 1’s in
the first two inputs of that row. At this point there are three
possibilities for the state of RA, given a fixed row. There can
be either 0, 1 or 2-many 1’s counted so far, in each row. If there
are zero objects counted so far in a row, then register RA of
that row has RA0 = RA1 = 0. If one object has been counted
in a given row, then that row has RA0 = 1 and RA1 = 0.
Finally, if two objects have been counted in a row, then register
RA of that row’s SLFA will have RA0 = 0 and RA1 = 1.
Next, send the contents of the principal bits in the third column
to RB0 of their respective SLFA. The SLFAs are run again to
find the total number of 1’s in the first three elements of each
row. Continue in this manner for all columns. After running
the SLFAs for the last column, each SLFA contains the total
count of 1’s in that given row. The total count of 1’s in a given
row is stored in register RA of that SLFA. Recall that each
row is independent, so that while one row may be counting the
fifth bit of that row, another row may be working on adding
the seventh bit. Once all rows are done counting the number

Fig. 2. A b×n grid of subunits constitutes an adder of n-many b-bit numbers.
This rectangular array is a simplified representation of a circuit that can
simulate the column reduction algorithm for adding multiple inputs. Every
column is a b-bit input. Each row consists of an n-bit SLFA, and every node
of the SLFA has an extra bit, called the principal bit. Every SLFA conforming
a row, will count the number of 1’s in that row. Then, the results are sent to
principal bits of the same column, in a diagonal manner that simulates the
column reduction algorithm. Here, a 4× 4 grid is shown.

of 1’s and each row has its total count stored in its register
RA, the next step is to send the contents of registers RA to
the principal bits corresponding to the diagonal placement of
the total count of 1’s. This happens for the b-many registers
RA, simultaneously. This is achieved through the connections
between nodes of the same column (thickest lines). This step
is equivalent to the diagonal placement of the count of 1’s
in a row, in the column reduction algorithm. Now, the entire
process is iterated, but the number of input columns has been
reduced to log n columns.

Let us analyze this circuit through examples. Fig. 2 is a
4 × 4 grid so this has to be taken into account for overflow
instances. First, let us carry out the operation 2 + 3 + 2 + 3.
For this, we have to load the inputs to the principal bits. The
first input 2 = 0010 will be uploaded to the left-most column,
column 0. This means that P0 in SLFA1 of Fig.2 has the value
“1” stored. The other principal bits P0 of column zero 0 will
store the value “0”. The next column, column 1, is going to
store the value “1” in the principal bits P1 of SLFA0 and
SLFA1, while “0” is stored in the principal bits P1 of SLFA2
and SLFA3. The configuration of column 2 is the same as
column 0, and the configuration of column 3 is identical to
column 1. The inputs of the principal bits will appear as in
the matrix below.

0 0 0 0
0 0 0 0
1 1 1 1
0 1 0 1.

Once the principal bits have stored the inputs, the number of
1’s in each row must be counted. The bits in column 0, the left-
most column, will be counted first. Each of the four SLFA has
a principal bit P0. Those bits are sent from P0 to register RB0

of the same SLFA; they are displaced within their same node.
At the end of this step, SLFA1 will have RB0 = 1. All other
values RAi and RBi in the SLFAs are set to 0. We run the
SLFAs. This time, all four of the SLFAs will start the addition
process, but as more iterations are made, each SLFA will be
running independently. Once a row has finished a subprocess
(the addition corresponding to adding a 1/0 from that row), it
will request the next bit of that row, independently of the other
rows. Let us first simulate what happens in SLFA0,SLFA2 and
SLFA3. Register RB in those rows will signal termination
of the addition subprocess because they are equal to the zero
vector. This means that in the next clock cycle, SLFA0,SLFA2
and SLFA3 will be receiving the next bit of their row, to
add. Row 1, on the other hand will send the contents of its
registers RA and RB through the half adder and RB will
not signal subprocess termination because it is not the zero
vector. The result at the end of this step will be that the value
of 1 that was stored in RB0, is now stored in RA0. In the
next iteration, register RB0 of SLFA1 will be the zero vector
so that subprocess termination will be signaled. SLFA1 will
receive the next principal bit of its row, P1, one step after
the other SLFAs. SLFA1 signals subprocess termination of
adding the first significant bit of its row, when the other adders
receive the next significant bit to count. That is to say, SLFA1
signals the termination of adding the first bit, in the same
step that the other adders are migrating the contents of P1

to RB0. At the end of this step, SLFA1 has RA0 = 1 and
RB0 = 0. On the other hand, SLFA0 now has RA0 = 0 and
RB0 = 1 because it has imported the contents of P1 = 1 to
RB0 for counting. All other values of the SLFAs are zero.
In the next cycle, SLFA1 imports the next bit, P1 = 1, into
register RB0 for counting. This means that the configuration
of SLFA1 will be RA0 = RB0 = 1 and RA1 = RB1 = 0.
Meanwhile, SLFA0 sends the bit stored in RB0 to RA0. The
configuration of SLFA0 at the end of this step is RA0 = 1
and RB0 = RA1 = RB1 = 0 meaning that it has counted
a single 1 in the first two bits of that row. Simultaneously,
SLFA1 will send the contents of RA and RB through the
half adders and at the end of this step this adder will have
RA0 = RB0 = RA1 = 0 and RB1 = 1 which means that
SLFA1 has counted two 1’s in the first two bits of its row.
SLFA0 will signal subprocess termination and request the next
bit, P2, because its register RB is the zero vector. During this
step, SLFA1 will send the contents of RA and RB through
the half adder, resulting in RA0 = RB0 = RB1 = 0 and
RA1 = 1. Next, SLFA0 will store the contents of P2 = 0
in RB0, at the same time that SLFA1 signals termination of

the addition subprocess. In the next iteration, SLFA0 signals
termination and requests the contents of P3, while SLFA1
saves the contents of P2 = 1 in its register RB0. In the next
step, SLFA0 will move the contents of P3 = 0 into RB0.
The configuration of SLFA0 is now RA0 = RB0 = 1 and
RA1 = RB1 = 0. In this same step, running SLFA1 moves
the 1 saved in RB0 to RA0. This leaves the configuration
of SLFA1 as RA0 = RA1 = 1 and RB0 = RB1 = 0,
meaning that it has counted a total of three 1’s in the first three
bits of row 1. The subsequent step will make SLFA0 send its
contents through the half adders and the new configuration
of its registers will be RA0 = RB0 = RA1 = 0 and
RB1 = 1. This means that SLFA0 has counted a total of two
1’s in the first three inputs of that row. Meanwhile, in SLFA1,
the subprocess of addition is signaled as terminated because
RB is read as the zero vector. Next, SLFA0 will send its
contents through the half adders, and the new configuration
is RA0 = RB0 = RB1 = 0 and RA1 = 1. In this same
step SLFA1 moves the contents of P3 to RB0. After this,
in the next iteration, SLFA0 signals termination because its
register RB is the zero vector. This means that SLFA0 is
already done counting because it has added all the bits of
that row, from P0 thru P3, and it will standby until SLFA1 is
done counting. The total count of 1’s in the principal bits of
row 0 is given in RA of SLFA0 as RA = 0010 because
RA0 = RA2 = RA3 = 0 and RA1 = 1. The current
state of SLFA1 is given by RA0 = RB0 = RA1 = 1 and
RB1 = 0. Running the SLFA will reconfigure the registers to
RA0 = RB0 = 0 and RA1 = RB1 = 1. Another iteration
of SLFA1 will give RA0 = RB0 = RA1 = RB1 = 0
and RB2 = 1. One more iteration of SLFA1 gives RA0 =
RB0 = RA1 = RB1 = RB2 = 0 and RA2 = 1. In the
next step, RB of SLFA1 is the zero vector so that in the
step after that, the addition of P3 is signaled as finished. The
total count of 1’s in row 1 is given in register RA. Thus,
we can conclude that there are four 1’s in row 1 because
RA = 0100. Now that we have the total count of 1’s in each
row, these totals have to be sent to the corresponding bits,
as given by the column reduction algorithm. The connections
between nodes of the same columns are used for sending
the contents of registers RA to predetermined principle bits.
Let us first observe that SLFA0 has a 1 stored in RA1. The
column connections (thickest lines) will send this value 1 to
the principal bit P1 of SLFA2. At the same time, the 1 saved
in RA2 of SLFA1 is going to be sent to the principal bit P2 of
SLFA3. This means that we have reduced the addition of four
numbers, to the addition of three numbers. The new columns
are given by the matrix

0 0 1
0 0 0
0 1 0
0 0 0.

Counting the number of 1’s in each row of the last matrix
will give us two new columns.

1 0
0 0
1 0
0 0.

This process has to be iterated until only the first column is
different from the zero vector, so that we are done. The result
is equal to ten 2 + 3 + 2 + 3 = 1010, as we would expect.

When the i-th significant bit of a row is sent to the SLFA,
the addition that follows takes at most max(i) + 1 iterations
of the SLFA. The worst case scenario, when adding n inputs,
occurs if a row has n-many 1′s in the principal bits. The
number of steps in the worst case scenario is bounded by
max(2)+max(3)+max(4)+ . . .+max(n)+n, but is much
lower because most of the terms can be bounded by smaller
numbers. For example, if i is a multiple of 2, then only one
iteration of the SLFA is needed in the i-th step. If i is odd,
then at least one iteration is needed. The only occasions where
max(i) + 1 iterations of the SLFA are needed is if i is of the
form 2k − 1, for some k.

The relative efficiency of this implementation with respect
to other circuits could be analyzed by cases, in terms of the
quotient of n and b. For large b and small n, it is easy to see
the advantages this circuit would have because it calculates
the total number of elements in a row, and it does all rows in
parallel. The more rows there are relative to columns the more
advantage provided by this method. There is a problem when
n gets too big. When the i-th bit of a given row is sent to
the SLFA for counting, the SLFA performs max(i) + 1 many
iterations. If n is too large this method will present diminishing
returns, as i approaches n. However, for this case there is an
alternative. The number of summands can be reduced by half
in a fixed number of steps. The method reduces the addition
of n summands to the sum of max(k)+1. Thus, 8 summands
can be reduced to max(8) + 1 = 4 summands. If the number
of summands is a multiple of 8, then this fact can be used to
reduce by half the number of summands. There is another way
to reduce summands by half because 4 summands are reduced
to max(4) + 1 = 3 summands which in turn are reduced to
max(2)+1 = 2 summands. This means that if the number of
summands is a multiple of 4, then the number of summands
can be reduced to half in this manner. These alternate methods
of reduction into half are achieved by rearranging the vertical
and horizontal connections of the grid. Depending on the
quotient and size of n and b there will be an optimal size
for reduction of summands that minimizes time complexity,
and the topology of the nodes is unchanged.

The Von Neumann Architecture conventionally segregates
memory and ALU into distinct components, necessitating
continuous data migration between these units. This architec-
tural division, known as the Von Neumann bottleneck, is the
biggest contributor to energy consumption and time delays
in a processor. The inherent challenge arises from the rigid,
rectangular grid structure of memory, conflicting with the
intricate and irregular connections inherent in logic circuitry
for arithmetic operations. To address these conflicts, a novel

approach is taken by allocating memory units to one layer and
logic circuitry to another layer [19] as in Fig. 3. One layer is a
matrix of memory nodes with size b×n; each node containing
at least a 3-bit register. A second layer is a logic grid of the
same size b × n each node comprised by at least one half
adder. This strategic separation is possible due to the identical
rectangular geometries of both layers and an equal number of
nodes in one-to-one correspondence. This superposition of two
rectangular grids of equal size solves fundamental challenges
and lays the groundwork for Computing-In-Memory [20]. The
resulting architecture promises noteworthy improvements in
terms of reduced delay and energy consumption. This inno-
vative approach warrants further exploration and comparison
[18] against alternative architectures to comprehensively assess
its advantages and potential applications. Other multipliers can
be found in [21], [22], [23].

Fig. 3. The multiple input adder can be organized in two layers. One layer
is reserved for memory registers, and the other layer is a grid of half adders.

A. Scalar Multiplication

Given that this low-powered circuit performs addition of
multiple inputs, it is compatible with parallel-multiplication of
two inputs. Additionally, the circuit is able to perform parallel
addition of b-many pairs of n-bit numbers, because each SLFA
(rows) can be used as an independently-timed SLFA. The cir-
cuit is linearly scaleable in terms of bits and inputs, it presents
the minimum possible topological complexity (rectangular grid
of nodes with parallel connections), and is low-powered due to
the gate depth. Although PASTA adders [24] are topologically
equivalent to the SLFA, it is important to note the PASTA
adder is an asynchronous circuit, like most fast-adders, and
therefore it lacks the memory units necessary for this addition
of multiple inputs. The PASTA adder has multiplexers instead
of the registers used in the SLFA, making it inappropriate for
In-Memory arithmetic.

B. Matrix Multiplication

There are several benefits in using this architecture for
matrix multiplication. Examples of current solutions to matrix
multiplication are proposed and referenced in [25].

Let A,B two matrices of size p×n and n× q, respectively,
and let the elements of the matrix be b-bit numbers. Let M1

a rectangular array of size 2bn× b. Rows 1 through 2b form
an adder of b-inputs of b-bits. Rows 2b + 1 through 4b form
another adder of b-inputs of b-bits, etc. Array M1, of Fig.
4, functions as n-many, b-input adders of b-bit numbers. It
is able to parallelly execute the partial products of the dot

product a · b, where a = (a1, . . . , an) is a row vector of A
and b = (b1, . . . , bn) is a column vector of B. That is to say,
M1 can execute the partial products a1 · b1, . . . , an · bn, in
parallel. The partial product a1 ·b1 is calculated in rows 1 thru
2b, product a2 ·b2 is calculated in the next 2b-many rows, rows
2b+ 1 thru 4b, etc.

Fig. 4. M1 consists of n-many multiple input adders, each one able to
compute partial product of the dot product.

Suppose you have additional copies M2, . . . ,Mq , of M1.
Let bi the i-th column of B and let a any row vector of
A. Use M1 for calculating the partial products of a · b1, use
M2 for finding the partial products of a · b2, etc. Employing
M1, . . . ,Mq allows to compute, in parallel, all of the partial
products involved in finding an entire row of A · B.

If we consider an extra row of adders, call it M0, it will
serve to parallel add all the partial products, Fig. 5. The
adders of M0 are required to be of size (2b +max(n)) × n.
The multiple input adder MIA1 of M0 will add the partial
products of a · b1, that were calculated in M1. Adder MIA2
of M0 will add the partial products corresponding to a · b2,
from M2, etc. This way, using M0,M1, . . . ,Mq allows for the
parallel computation of an entire row in the time that it takes to
multiply two b-bit numbers (calculate partial products), plus
the time it takes to add n-many 2b + max(n)-bit numbers
(add partial products). A single adder Mi, from M , calculates
a single element of the product matrix A × B. Therefore,
taking p-many copies of circuit M , from Fig. 5, will allow
for the multiplication of a Matrix in the same time. In matrix
multiplication it can often be the case that the number of bits
of the result, is much smaller than the number of rows and
columns. Adaptations can be made for that and other cases,
based on area-specific use and pipeline needs.

Fig. 5. Using a total of q-many units M1, . . . ,Mq , it is possible to execute
the partial products of a row. The multiple input adders of M0 will add the
corresponding partial products. The multiple input adder MIAi, of M0, will
add the partial products MIA(i,1), . . . ,MIA(i,n), calculated in Mi.

VI. CONCLUSION

In a world pushing the boundaries of innovation, we are
reaching the limits of current technological frameworks. A
novel conceptualization of the foundations of mathematics,
with immediate applications in a number of key technolo-
gies is proposed, facilitating seamless data representation and
computational operations. Information theory and computer
science, from high-level Software languages down to the
System-on-Chip Hardware level, can be benefited. The Patent-
Pending Compute-In-Memory architecture of the Simple and
Linear Fast Adder maximizes efficiency and performance of
matrix multiplication. Additionally, a Fast Derivative Ap-
proximation is compatible with the SLFA. The set theory
proposed can unify diverse computer science domains under
one robust mathematical framework. This integration blueprint
connects different applications for improved standards of next-
generation devices and systems, at various levels. It pushes
for a Vertical and Horizontal implementation of mathemat-
ically optimal solutions, enhancing efficiency and security
throughout the universal digital ecosystem. For example, the
Fast Derivative Approximation can be performed with the
SLFA in two cycles, plus at most n-bit shifts. The scalability
and linearity of the circuit topology also allows for easier
design of architectures that go beyond 64-bits. State-of-the-
art Homomorphic Encryption can be merged together with
the arithmetic architecture for designing Encrypted Processing

Units. A range of challenges for HE can be solved in this
model, including a version of Homomorphic Encryption that
merges the Processing and the Decryption steps, into a single
step. The operation is the key, so the second party can only use
the encrypted inputs for the intended purposes. Information in
the cloud will not have to be stored or accessed in plaintext
by a second party, in order for them to use that information.
Therefore, in analogy we can think of data shared in this cloud
as current, instead of stored files. The state of development
of these applications and others can be found at the author’s
personal page.

REFERENCES

[1] J. P. Ramı́rez, “A New Set Theory for Analysis,” Axioms. 2019, 8, 31.
[2] J. P. Ramı́rez, “Canonical Set Theory with Applications from Parallel

Matrix Operations and Data Structures to Homomorphic Encryption,”
(Preprint) Author’s homepage: www.binaryprojx.com. 2023.

[3] P. Bernays, “Axiomatic Set Theory,” Dover: New York, NY, USA, 1991.
[4] N. A’Campo, “A Natural Construction for the Real Numbers,” arXiv,

2003; arXiv:math.GN/0301015 v1.
[5] R. D. Arthan, “The Eudoxus Real Numbers,” arXiv, 2004;

arXiv:math/0405454.
[6] N. G. De Bruijn, “Definig Reals Without the Use of Rationals,” Koninkl.

Nederl. Akademie Van Wetenschappen: Amsterdam, The Netherlands,
1976.

[7] A. Knopfmacher and J. Knopfmacher, “Two Concrete New Construc-
tions of the Real Numbers,” Rocky Mt. J. Math. 1988, 18, 813–824.

[8] L. Corry, “David Hilbert and the Axiomatization of Physics
(1898–1918): From Grundlagen der Geometrie to Grundlagen der
Physik,” Springer Netherlands, 2010.

[9] P. Benacerraf, “What Numbers Could Not Be,” Philos. Rev. 1965, pp.74.
[10] R. Thiele, “Hilbert’s Twenty-Fourth Problem,” The Amer-

ican Mathematical Monthly, 110:1, 1-24, 2003. DOI:
10.1080/00029890.2003.11919933

[11] W. Ackermann, “Die Widerspruchsfreiheit der allgemeinen Mengen-
lehre,” Math. Ann. 114, 305–315.

[12] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” Journal
of the ACM, 27(4), pp. 831-838, October 1980.

[13] N. Metropolis, G. C. Rota, S. Tanny, “Significance Arithmetic: The
Carrying Algorithm,” Journal of Combinatorial Theory, Series A, 1973,
14, 386–421.

[14] R. Uma, V. Vijayan, M. Mohanapriya, S. Paul, “Area, Delay and Power
Comparison of Adder Topologies,” International Journal of VLSI design
& Communication Systems (VLSICS) Vol.3, No.1, February 2012.

[15] R.P.P. Singh, P. Kumar, B. Singh, “Performance Analysis Of Fast Adders
Using VHDL,” 2009 International Conference on Advances in Recent
Technologies in Communication and Computing. IEEE Computer Soci-
ety.

[16] D. R. Lutz and D. N. Jayasimha, “The Power of Carry Save Addition,”
Department of Computer and Information Science, The Ohio State
University. 1994.

[17] M. A. Franklin and T. Pan, “Performance Comparison of Asynchronous
Adders,” Proceedings of IEEE Symposium on Advanced Research in
Asynchronous Circuits and Systems, Salt Lake City, 3-5 November
1994, 117-125. https://doi.org/10.1109/ASYNC.1994.656299

[18] J.L. Hennessy and D. A. Patterson “Computer Architecture: A Quanti-
tative Approach,” Morgan Kaufmann, Waltham. 1990.

[19] J. H. Kang, H. Shin, K.S. Kim, et al. Monolithic 3D integration of 2D
materials-based electronics towards ultimate edge computing solutions.
Nat. Mater. 22, 1470–1477 (2023). https://doi.org/10.1038/s41563-023-
01704-z

[20] C. Wang, G. Shi, F. Qiao, R. Lin, S. Wu and Z. Hu, “Research Progress
in Architecture and Application of RRAM with Computing-In-Memory,”
Nanoscale Adv., 2023, 5, 1559-1573.

[21] M. Abrar, H. Elahi, B. A. Ahmad et al, “An area-optimized N-bit
multiplication technique using N/2-bit multiplication algorithm,” SN
Appl. Sci. 1, 1348 (2019). https://doi.org/10.1007/s42452-019-1367-6

[22] N. Emmart and C. C. Weems, “High Precision Integer Multiplica-
tion with a GPU Using Strassen’s Algorithm with Multiple FFT
Sizes,” Parallel Processing Letters, Vol.21, No. 03, pp. 359-375 (2011).
https://doi.org/10.1142/S0129626411000266

[23] M. I. M. Taib, M. N. Z. Nazri, et. al., “Design of Multiplication and
Division Operation for 16 Bit Arithmetic Logic Unit (ALU),” JOURNAL
OF ELECTRONIC VOLTAGE AND APPLICATION VOL. 1 NO. 2
(2020), 46-54. DOI: https://doi.org/10.30880/jeva.2020.01.02.006

[24] M. Z. Rahman “Parallel Self-Timer Adder (PASTA),” United States
Patent Application, May 9, 2013.

[25] T. Zhang, C. Xu, T. Li, Y. Qin, M. Nie, “An Optimized Floating-Point
Matrix Multiplication on FPGA,” Information Technology Journal, 12:
2013 1832-1838. DOI: 10.3923/itj.2013.1832.1838

VII. APPENDIX A

Fig. 6. Written opinion of the Internatinal Search Authority (ISA), regarding
patentability of the SLFA.

