
Canonical Set Theory with Applications from Parallel Addition of

Multiple Inputs to Matrix Multiplication and Data Structures

Juan Ramı́rez

July 7, 2023

Jalisco, México
www.binaryprojx.com

jramirez@binaryprojx.com

Abstract

Few questions that have resounded through the mind of the mathematician, as much as the simple question
of describing the nature of a number. The longstanding consensus is that it does not matter which set theory is
used to describe numbers. What matters is that it can be done. It is widely believed that the particular choice
of a construction for natural and real numbers is irrelevant for the rest of mathematics. A set theory is proposed
as a canonical theory that yields transparent proofs in fundamental areas of mathematics including group
theory, discrete mathematics, analysis, data types, and new results tying these areas and addressing Hilbert’s
24th (twenty-fourth) Problem and Benacerraf’s Identification Problem. Applications to computer science are
discussed and these include a linearly-scaleable circuit that serves for parallel addition and multiplication of
scalars, vectors and matrices, with wide implications for Area-Specific Integrated Circuits (ASICs) used in
CGI, Neural Networks and AI training, Digital Signal Processing, among other applications that depend on
fast and low-powered vector operations. This low-power In-Situ (In-Memory) computing architecture, based
on a patent-pending Simple and Linear Fast Adder (SLFA), is a direct consequence of the proposed set theory.
Algebraic invariants are also described with results bringing together set theory, discrete mathematics, number
theory and algebraic structures. A canonical block form is defined for the Cayley table of finite groups, in terms
of a numeric representation of groups. Automorphisms, and the minimal independent system of equations that
define the group are given by the block form, among other information regarding groups’ internal and external
structure. The proposed construction of natural numbers is generalized to provide a simple and transparent
construction of the continuum of real numbers, with a fast approximation for the numeric derivative that can
be implemented with the SLFA. Infinite data structures are defined in the most efficient way with the smallest
possible data type. A countable sequence of real numbers is coded in a single real number, and an infinite
∞×∞ real-valued matrix is also coded with a single real number. A real function is coded in a set of real
numbers, and a countable sequence of real functions is also coded in a set of real numbers. These codings
are meaningful and computable. Mathematical objects of all types are well assigned to tree structures in a
proposed hierarchy of types.

Keywords: Structuralism; Set Theory; Fast Adder; Arithmetic Logic Unit; Finite Group; Real Number; Fast
Derivative; Data Types; Tree; Type Theory; Computability; Complexity, Matrix Multiplication

Introduction

The first section gives appropriate definitions for operation, group, field and linear space are given that allow
simple constructions and proofs in the next sections. It is not a prerequisite for understanding the other sections.
The reader who is not motivated by algebraic definitions may skip this section, but Definition 1 and Theorem 1,
found in this section, should be understood before proceeding.

Today, every mathematician knows that the natural number zero is the empty set, ∅. However, most math-
ematicians in the time of Hilbert (and to this day) did not feel the need to justify the existence of the number
0, and argued that the nature of numbers is irrelevant and only their behavior is important. When Hilbert
proposed his famous list of Problems (Paris, 1900), he paid special attention to the philosophical and practical

1

implications of the Axiomatic Method; abundant material on this subject is found in [Corry(2010)] and other
articles and books from this author. Hilbert gave so much thought to this type of problem that the first two and
the sixth problem are axiomatic questions. The first is the Continuum Hypothesis, the second is the problem of
proving consistency and completeness of arithmetic, and the sixth is the axiomatization of physics. In the decades
that followed, a monumental, collective, attempt was made to answer these metamathematical questions through
the formalization of different set theories and their logical structures. An explosion of new ideas, concepts and
methods was born from these philosophical questions. Physics had been thought to be nearly explained away at
the end of the 19-th century, but then relativity and quantum theory came along and pulled the veil. Then, just
when everybody thought that a perfect description, if not of physics, but at least of mathematics, was possibly
attainable, Gödel tore down these illusions with his incompleteness theorems. He did it in the preconceived world
where the Peano Axioms are true. The incompleteness theorems are true if one assumes that natural numbers
are objects ruled by Peano’s axioms. It is a general consensus that the axiomatization of natural numbers chosen,
or the specific computable coding of numbers and other structures, is irrelevant and all that matters is that it
can be done. Still, the question has been raised in the literature of philosophy of mathematics, structuralism,
and set theory, if an alternative axiomatic system could exist that solves, not necessarily all, but some of the
metamathematical questions on the foundations of mathematics. Is there an alternative set theoretic definition
of natural numbers that is specific enough that all mathematical objects are well defined but general enough
that the widest possible collection of theorems is provable, all while carefully avoiding paradox? These types
of questions have taken various forms, and it is difficult enough to ask them in any of these forms. One of the
forms this question has taken is Benacerraf’s Identification Problem [Benacerraf(1965)]. Hilbert had analyzed
this problem in a similar way, but perhaps he thought it was not prudent to cause mathematicians more confusion
than he was already going to cause with problems 1,2 and 6. Hilbert knew that simply asking these questions
was enough of a complication to mathematics and that this next problem, his 24th problem [Thiele(2003)], could
wait. “The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of the greatest simplicity
of certain proofs. Develop a theory of the method of proof in mathematics in general. Under a given set of
conditions there can be but one simplest proof.” A set theory is proposed that simplifies proofs and provides
applications in pure and applied mathematics. The case is made that this is a unique and canonical set theory
as part of a broader attempt in proposing an optimal universe for classical mathematics from number theory to
analysis [Ramirez(2019)]. The second section describes natural numbers as the set of all hereditarily finite sets,
HFS. An order < and operations ⊕,⊙ are defined on HFS, isomorphic to the natural numbers N(<,+, ·). This
axiomatization has important consequences in the representation and classification of finite and infinite objects.

A description for a “Simple and Linear Fast Adder” (SLFA-Patent Pending) sequential circuit with potentially
comparable performance and more energy efficient than other fast adders [Uma(2012)],[Singh(2009)] is discussed
in the second section. Appendix “A” is a self-contained patent description of the SLFA. The second section also
describes a method for addition of multiple operands that reduces the addition of n-many operands to the addition
of two operands, along with a description of the multiple input adder and its implementations in vector operations.
This method is implemented in a simple design by connecting multiple SLFAs in parallel. Multiplication of two
numbers is possible by using this architecture for addition of partial products, making it a good replacement
of Carry Save Adders [Lutz(1994)] also. This multi-operation multi-operand circuit is achieved by connecting
b-many SLFAs, of n-bits each, using only parallel connections. It is a rectangular grid of nodes that can perform
addition of n-many b-bit numbers, or add b-many pairs of n-bit numbers, or multiply two numbers. The same
circuit can also fast approximate numerical derivatives, creating more opportunities for fundamental computing
advantages. One of the basic problems with Von Neumann Architecture is that memory and logic units are
separate components with a relative distance between them and have to communicate back and forth through
a bus. The bandwidth of the bus is usually the bottleneck of the processor. One solution proposed decades
ago was the concept of Computing-In-Memory, but it has several implementation difficulties. The proposed
rectangular ALU architecture offers solutions to some of the basic problems for Computing-In-Memory because
the logic topology is identical to the memory topology (rectangular grid with parallel connections). Meaning,
the architecture can be scaled in a one-to-one fashion with memory in terms of area, delay and topological
complexity giving it an advantage in high-energy consuming tasks used in neural network training, processing
SHA functions [Sun], etc. This architecture has significant advantages over traditional ALUs (Arithmetic Logic
Units) in high-speed implementations of ASIC (Area-Specific Integrated Circuit) because the logic and memory
have the same topology and can be layered one on top of the other in a one-to-one manner. Some of the advantages
related to Computing-In-Memory are found in [Wang(2023)]. Specific designs are possible for scalar, vector and

2

matrix multiplication pipelines using minimum area, delay and energy consumption than other CPU architectures
[Hennessy(1990)]. The circuit design for vector and matrix operations will only be discussed very briefly here,
given its potential to generate a competitive edge in the design of ASICs used in Digital Signal Processing,
advanced CGI applications, Neural Networks and AI Training among other important applications that heavily
rely on processing power for computing large numbers of matrix multiplications, faster and cheaper. Some details
will be described here or in future publications which will be made available at the author’s homepage, and other
details will be reserved for collaboration. If you are interested in this line of research, or to become a financial
partner, you can email or visit the author’s homepage.

In the third section, a method for coding a finite function as a natural number is detailed. If A,B are two finite
sets and f : A → B a function, then a unique natural number Nf is assigned to the function. A linear order on all
finite functions is obtained that is well behaved in several ways. There is a suborder induced on the subset of all
finite permutations which is also well behaved in its own ways. Specifically, if ηm, ηn are permutations of m < n
many objects, respectively, then ηm < 1n ≤ ηn ≤ idn where 1n is the one-cycle permutation of n objects and
idn is the identity permutation of n objects. This representation gives a good definition for equivalent functions
and permutations. Two finite functions are equivalent if they are represented by the same natural number.

In the fourth section, a formal definition of finite groups is given in terms of natural numbers, where a single
natural number is used to code the group in a computable manner. Every finite group G, is well represented with
a natural number NG; if NG = NH then H,G are in the same isomorphism class. This defines a linear order on
the set of all finite groups, that is well behaved with respect to cardinality. In fact, if H,G are two finite groups
such that |H| = m < n = |G|, then H < Zn ≤ G. The linear order on groups is

Z1 < Z2 < Z3 < Z4 < Z2
2 < Z5 < Z6 < D6 < Z7 < Z8 < Q8 < D8 < Z2 ⊕ Z4 < Z3

2 < Z9 < Z2
3 < · · · , (1)

whereDn is the Dihedral group andQ8 is the quaternion group. In general, Zn ≤ G if |G| = n and the order is well
behaved with respect to cardinality. The linear order induced on commutative groups, of n objects, also behaves
well with respect to factorization of n. Intuitively, if n = pk, then Zpk < Zp ⊕ Zpk−1 < Z2

p ⊕ Zpk−2 < · · · < Zk
p.

For example, Z8 < Z2 ⊕Z4 < Z3
2, and Z9 < Z2

3. If n = pn1
1 pn2

2 pn3
3 · · · pnk

k is the prime factorization of n, then the
commutative group Zn1

p1
⊕Zn2

p2
⊕Zn3

p3
⊕ · · ·⊕Znk

pk
is the largest commutative group of n objects. For this purpose,

a definition of canonical form for a group is given. The canonical form of a finite group is the Cayley table for
the group, in a special block form. It reduces the problem of proving two finite groups are isomorphic to finding
the canonical table of these groups. In the process of finding the canonical block form, the automorphisms and
the minimal set of independent equations that define the group are obtained. An appendix is included where
groups of less than ten objects are taken to their canonical block form. The canonical form and all twenty-four
automorphisms of the symmetry group ∆4 are also included in the appendix. A second appendix illustrates the
canonical block form defined for finite groups.

The study of real numbers has been reduced to the study of natural numbers. However, the gap (conceptual
and practical) between these two kinds of objects is enormous, in most treatments. The proposed set represen-
tation of natural numbers allows for the continuum of real numbers to be constructed as a natural extension of
the set of natural numbers, without having to build intermediate structures such as Z or Q. A natural number is
a finite subset of HFS, while a real number is an infinite subset of HFS. A fast derivative algorithm is obtained
as an approximation to the numerical derivative of a real function. Just as a finite group is reduced to a natural
number, similar results are true in the infinite case. For example, a real function is a set of real numbers. More
surprisingly, a countable sequence of real functions is also a set of real numbers. The general idea is that the
complexity of objects is reduced to the minimum possible. In the last section, mathematical objects are well
assigned to tree structures. Natural numbers are finite trees (objects of type 0), real numbers are infinite trees
(objects of type 1). Sets of real numbers are objects of type 2, and a set of sets of real numbers is an object of
type 4. A general description of types is briefly discussed.

Applications to be discussed in separate publications include a new coding of data structures in special
memory units; an ALU architecture for optical computing schemes; a finite arithmetic important in the logical
approach to artificial intelligence (AI) problems [Lovyagin(2021)]; a theoretical model on the probabilities of
nuclear reactions, using a hexagonal grid that codes addition of natural numbers and multiplication of rationals
through basic geometric relations; among others. The addition algorithm presented here relates the addition of
numbers to the superposition of coupled waves; this is addressed in the conclusions. The lattice for determining
nuclear reactions probabilities’ with calculations on discrete number systems and the question of whether or not
there exists an intrinsic connection between mathematics and physics, will be addressed in a later publication.

3

1 Groups, Fields and Linear Spaces

Operations are usually defined as a function of the form (X ×X) → X. An alternate approach is taken here, by
defining the operation of a group as a function X → (X → X), which is known as Currying. A description of
fields and linear spaces is also given in this section. The definitions and propositions, of this section, allow trivial
proofs in the theory of set numbers of Section 2.

Definition 1. Let G a non empty set, and Aut G the set of bijective functions of the form G → G. A one-to-one
function G → Aut(G) is an operation on G. A set of functions B ⊆ Aut G is said to be balanced if idG ∈ B,
and if x ∈ B implies x−1 ∈ B. Let ∗ : G → B a bijective function, for some balanced set B ⊂ Aut G. If

∗(x) ◦ ∗(y) = ∗(∗(x)(y)), (2)

for every x, y ∈ G, then ∗ is a group structure.

The functions ∗(x) are called operation functions of ∗. The expression ∗(x)(y) ∈ G is the image of y under
the action of ∗(x). Thus, ∗(∗(x)(y)) ∈ Aut G is the image of ∗(x)(y) ∈ G under the action of ∗.

Theorem 1. The definitions of group and group structure are equivalent.

Proof. Let ∗ a group structure and define an operation on the elements, x ∗ y = ∗(x)(y). It should be noted that
x∗y = ∗(x)(y) is only a convention and depending on the specific function, this convention can vary. For example,
an operation can be defined by x ∗ y = ∗(y)(x). The choice is irrelevant but must be consistent throughout, for
each individual operation. Then, the following properties can be verified.

• Identity Element. There exists an object e ∈ G such that ∗(e) = idG. Therefore, ∗(e)(x) = x for
all x ∈ G. This means e ∗ x = x for all x ∈ G. Now it must be shown x ∗ e = x. It is true that
∗(∗(x)(e)) = ∗(x) ◦ ∗(e) = ∗(x). Since ∗ is injective, it is also true that ∗(x)(e) = x.

• Inverse Element. Let a ∈ G, then there exists a unique a−1 ∈ G such that ∗(a−1) = (∗(a))−1 is the inverse
function of ∗(a). This is a direct consequence of the definition of balanced set. It will be proven that
a ∗ a−1 = a−1 ∗ a = e. It is enough to prove a−1 ∗ a = e. It can be verified that a−1 ∗ a = ∗(a−1)(a) =
(∗(a))−1(a). Additionally, ∗(a)(e) = a. Therefore, the inverse function of ∗(a) applies (∗(a))−1(a) = e.

• Associativity.

x ∗ (y ∗ z) = ∗(x)(y ∗ z)
= ∗(x)(∗(y)(z))
= (∗(x) ◦ ∗(y))(z)
= ∗(∗(x)(y))(z)
= (∗(x)(y)) ∗ z
= (x ∗ y) ∗ z.

For the second part of this proof, it is enough to prove that a group G defines a group structure. The operation
functions of the group structure are defined in terms of the cosets xG; define ∗(x) by g 7→∗(x) x ∗ g. It is easy to
verify ∗ is an injective function and it is onto a balanced set. The associative property implies (2).

The equivalence of groups and group structures is used to find their basic properties.

Theorem 2. Let G(∗) a group with operation ∗. Then,

1. Right cancellation; ∗(a)(c) = ∗(b)(c) implies a = b.

2. Left cancellation; ∗(c)(a) = ∗(c)(b) implies a = b.

3. Uniqueness of identity and inverse elements.

4. Inverse of inverse; (x−1)−1 = x.

4

5. Existence of unique solutions; given a, b ∈ G there exists a unique x ∈ G such that ∗(a)(x) = b, and a
unique y ∈ G such that ∗(y)(a) = b.

Proof. The first part requires to apply the function ∗, so that ∗(∗(a)(c)) = ∗(∗(b)(c)) which implies ∗(a) ◦ ∗(c) =
∗(b) ◦ ∗(c). Right cancellation of functions gives ∗(a) = ∗(b). It is concluded a = b because ∗ is bijective. The
second part can be proven similarly if left cancellation of functions is used.

Let e1, e2 be identity elements. Considering e1 as identity, then ∗(e1)(e2) = e2. If e2 is the identity, then
∗(e1)(e2) = e1. Therefore e1 = e2. The uniqueness of the inverse is trivial. If a1, a2 are inverse elements of a,
then ∗a(a1) = e = ∗a(a2) implies a1 = a2 because of left cancellation.

Let y = x−1, so that ∗(x) and ∗(y) are inverse functions; (∗(x))−1 = ∗(y) and (∗(y))−1 = ∗(x). The inverse
element of y = x−1 is the object z such that ∗(z) is the inverse function of ∗(y). Therefore, x is the inverse of y
and it is concluded (x−1)−1 = x.

For the last part, consider a, b fixed. Since ∗(a) is a bijective function G → G, there exists a unique x ∈ G
such that ∗(a)(x) = b. On the other hand, a function ∗(y) that sends a to b needs to be defined. It is easy to see
that b ∗ (a−1 ∗ a) = b, which can be rewritten as (∗(b) ◦ ∗(a−1))(a) = b. The function ∗(b ∗ a−1) = ∗(∗(b)(a−1)) =
∗(b)◦∗(a−1) sends a to b so that y = b∗a−1 is the solution. Suppose there exists a second object, w, that satisfies
the property of y. Then ∗(y)(a) = ∗(w)(a) which implies y = w if right cancellation is used.

Proposition 1. A group structure, ∗, defines a new function ∗̄ : G → Aut(G) such that ∗̄(a)(b) = ∗(b)(a) = b∗a.
The function ∗̄ is also a group structure. The two group structures ∗, ∗̄ are equivalent in the sense that they
generate isomorphic groups.

Proof. First prove ∗̄ is a group structure. It must be shown ∗̄ is a function ∗̄ : G → B, where the image Im ∗̄ = B
is a balanced subset of Aut(G). Every object a ∈ G is assigned a unique function ∗̄(a), and ∗̄(e) = idG for exactly
one object e ∈ G. Next it will be proven ∗̄(a) is bijective. First of all, it is injective. Take ∗̄(a)(x) = ∗̄(a)(y) which
is equivalent to the expression x∗a = y ∗a, then x = y because of right cancellation. This proves ∗̄(a) is injective.
To prove ∗̄(a) is onto G, let b ∈ G, then there exists a solution x to the equation x ∗ a = b which is equivalent
to ∗̄(a)(x) = b. This proves ∗̄(a) is a bijection. Now it will be proven the inverse function of ∗̄(a) is equal to
(∗̄(a))−1 = ∗̄(a−1) ∈ Im(∗̄). By definition, ∗̄(a−1)(x) = x∗a−1. Also, ∗̄(a) acts by ∗̄(a)(x∗a−1) = (x∗a−1)∗a = x,
which implies the inverse function (∗̄(a))−1 acts by (∗̄(a))−1(x) = x∗a−1. This proves ∗̄(a−1) = (∗̄(a))−1. So far,
it has been proven the image of ∗̄ is a balanced set. To prove ∗̄ is injective, take two objects x, y ∈ G such that
∗̄(x) = ∗̄(y). Then, x = ∗̄(x)(e) = ∗̄(y)(e) = y. Now show ∗̄ satisfies the associative property. For all a, b ∈ G

∗̄(∗̄(a)(b))(x) = ∗̄(b ∗ a)(x)
= x ∗ (b ∗ a)
= (x ∗ b) ∗ a
= ∗̄(a)(x ∗ b)
= ∗̄(a)(∗̄(b)(x))
= (∗̄(a) ◦ ∗̄(b))(x),

for all x ∈ G. This proves ∗̄ is a group structure.
Let G(∗) be the group generated by ∗ and G(∗̄) the group generated by ∗̄, then x−1 is the same inverse

element under both operations. The inverse of a ∗ b, under ∗, is equal to b−1 ∗ a−1. The inverse of a ∗ b = b∗̄a,
under ∗̄, is equal to a−1∗̄b−1 = b−1 ∗ a−1. These two groups are isomorphic by x 7→ x−1. To prove, take
ϕ(a ∗ b) = (a ∗ b)−1 = b−1 ∗ a−1 = ϕ(b) ∗ ϕ(a) = ϕ(a)∗̄ϕ(b).

Definition 2. In general, the functions ∗(x) and ∗̄(x) are not equal. When they are equal, the object x is said
to commute. A group is abelian if its two generating functions are equal, ∗ = ∗̄.

Proposition 2. Let G(∗) an operation on the set G. The following are equivalent statements.

1. The operation ∗ is associative.

2. ∗(∗(x)(y)) = ∗(x) ◦ ∗(y) for all x, y ∈ G.

3. ∗(x) ◦ ∗̄(y) = ∗̄(y) ◦ ∗(x) for all x, y ∈ G.

5

Proof. The equivalence of 1. and 2. was proven in Theorem 1. Prove the equivalence of 1. and 3. Let z ∈ G,
then

(∗(x) ◦ ∗̄(y))(z) = ∗(x)(∗̄(y)(z))
= ∗(x)(z ∗ y)
= x ∗ (z ∗ y)
= (x ∗ z) ∗ y
= ∗̄(y)(x ∗ z)
= ∗̄(y)(∗(x)(z))
= (∗̄(y) ◦ ∗(x))(z)

Suppose 3. holds, then associativity can be proven,

x ∗ (z ∗ y) = ∗(x)(z ∗ y)
= ∗(x)(∗̄(y)(z))
= (∗(x) ◦ ∗̄(y))(z)
= (∗̄(y) ◦ ∗(x))(z)
= ∗̄(y)(∗(x)(z))
= ∗̄(y)(x ∗ z)
= (x ∗ z) ∗ y

The following result is useful for consequent sections. It gives a practical means of proving associativity. If
the elements of G commute and the operation functions also commute, then the operation is associative.

Proposition 3. If ∗ is a commutative operation on the set G, and ∗(x) ◦ ∗(y) = ∗(y) ◦ ∗(x), for all x, y ∈ G,
then ∗ is associative.

Proof. Given the hypothesis, the equalities ∗(x) ◦ ∗̄(y) = ∗(x) ◦ ∗(y) = ∗(y) ◦ ∗(x) = ∗̄(y) ◦ ∗(x) hold true. The
result follows from 3. and 1. of the last proposition.

Definition 3. Let G(∗) a group and let H ⊆ G be a subset of the set G. Define ∗H as the function ∗ restricted
to H. If ∗H is a group structure then it is a subgroup of G(∗).

For H ⊂ G to be a subgroup of G it is necessary that the image of H, under the action of ∗H(h), be equal to
H, for all h ∈ H. In short, ∗H(h)[H] = H, for all h ∈ H. This means H is closed under the operation ∗.

Definition 4. Given two groups G1(∗1) and G2(∗2), a homomorphism is a function ϕ : G1(∗1) → G2(∗2) such
that ϕ(∗1(a)(b)) = ∗2(ϕ(a))(ϕ(b)), for every a, b ∈ G1. The set of all homomorphisms from G1(∗1) to G2(∗2) is
represented by the notation Hom(G1, G2), when no confusion arises with respect to the operations of each group.

If the homomorphism is injective as function then it is called a monomorphism, and if it is surjective as
function it is called an epimorphism. If the function is bijective it is an isomorphism, or automorphism when
ϕ : G → G. The set of all automorphisms of G(∗) is represented with the notation Aut G(∗).

The notation Aut(G) and Aut G(∗) is used to differentiate between bijective functions and automorphisms.

Theorem 3. Let X a set, then the composition operation ◦ is a group structure for the set of all bijective functions
Aut X. A subset B ⊆ Aut X that is balanced and closed under composition is a subgroup B(◦) ⊂ Aut X.

A group structure ∗ : G → B, induces an isomorphism ∗ : G(∗) → B(◦).
The composition operation is a group structure for the set of automorphisms Aut G(∗). A balanced and closed

subset, B ⊆ Aut G(∗), is a subgroup B(◦) ⊂ Aut G(∗).

6

Proof. For the first part, consider the function ◦ : Aut X → Aut(Aut X). If f ∈ Aut X, then ◦(f) : Aut X →
Aut X is the function that acts by ◦(f)(g) = f ◦ g. It will be proven ◦ is a bijective function onto a balanced
set Im ◦. Every object in Aut X is assigned a function ◦(f) ∈ Aut(Aut X). To see ◦ is injective, take two
objects f, g ∈ Aut X and suppose ◦(f) = ◦(g). This implies f = f ◦ idX = g ◦ idX = g. Now, prove the image
of ◦ is balanced. The identity of G is mapped to ◦(idG) ∈ Aut(Aut X) which is the identity of Aut(Aut X).
Also, for every ◦(f) ∈ Aut(AutX), the inverse function is (◦(f))−1 = ◦(f−1) ∈ Aut(Aut X). The associative
property is the usual associativity of composition of functions. This proves the first assertion of the first part.
The second assertion of the first part is trivial. Take B(◦) balanced and closed under composition. This makes
B(◦) a group.

For the second part, it must be shown ∗ is an isomorphism. From the first part of this theorem, B(◦) is a
group. It is also known ∗ is a bijection. Definition 4 and associativity, in G, are used to verify ∗(∗(x)(y)) =
∗(x) ◦ ∗(y) = ◦(∗(x))(∗(y)), for all x, y ∈ G. This proves that the group structure ∗ produces an isomorphism
G(∗) → B(◦), where B(◦) is the image of ∗ with the operation ◦.

The third part of this theorem is proven similarly to the first part.

The distributive property is defined. Rings and fields are also defined.

Definition 5. Let K(+) a group with identity 0; the set K − {0} is represented by K0. Let · : K0 → C ⊂
Hom(K,K), an operation. The operation · distributes over K(+), because

·(x)(+(a)(b)) = +(·(x)(a))(·(x)(b)),

for every a, b, x ∈ K.
Let R(+) an abelian group, and let · a second operation that distributes over R(+). Suppose · is associative

and suppose ·1 = idR for a unique non trivial element 1 ∈ R0. A ring R(+, ·) has two operations, and if · is
commutative the ring is abelian.

Let K(+, ·) a ring and suppose Im(·) = C ⊂ Aut K(+) is a balanced set of automoprhisms. Then K(+, ·) is
a skew field. If the ring K(+, ·) is abelian, K(+, ·) is a field.

A new notation ∗x is used for the operation function ∗(x). The distributive property holds when a group K(·)
whose operation functions ·x, are homomorphisms on the original group K(+). The conditions give the relations
·x(0) = 0, for all x ∈ K. Define ·0(x) = 0. The operation function ·0 is the trivial function 0 : K → {0}.

Corollary 1. A field is an abelian group K(+) together with a second abelian group K(·) that distributes over
K(+).

Theorems 4 and 5, below, characterize linear spaces and modules. A linear space is an abelian group V (⊕),
together with a field of automorphisms of V (⊕). Although these two theorems are not explicitly used in the
following sections, it is useful for the last section on real numbers. Given an abelian group V (⊕) a second operation
on Hom(V, V) is given, apart from composition. The operation ⊕ of V naturally induces a closed operation
on Hom(V, V). This allows the definition of modules and linear spaces. Define addition of homomorphisms by
(f ⊕ g)(x) = f(x) ⊕ g(x). If B ⊂ Aut V (⊕), then the symbol B(⊕) is used to emphasize that the set is being
considered with addition, not composition. The trivial function e : V → {e} acts as an identity object under
addition of homomorphisms, f = f ⊕ e = e ⊕ f . Let f ∈ Aut V (⊕), and −f ∈ Aut V (⊕) the automorphism
defined by −f(x) = −(f(x)) where −(f(x)) is the additive inverse of f(x); the notation −x is used for the inverse
of x under ⊕. It is easily verified that f ⊕ (−f) = e. A set of automorphisms B(⊕) is balanced if e ∈ B(⊕), and
if f ∈ B(⊕) implies −f ∈ B(⊕).

Lemma 1. Let V (⊕) an abelian group with identity e, and B(⊕) ⊂ Aut V (⊕) a balanced set. If B(⊕) is closed
under addition of automorphisms, then B(⊕) is an abelian group with identity e.

Proof. This result provides an easy way of knowing if B(⊕) is a group with addition of functions. It is required
that B(⊕) be balanced. Under addition of automorphisms, the inverse of f is the function −f that acts by
x 7→ −(f(x)). The inverse of idV is −idV that makes x 7→ −x. Associativity in V (⊕) implies associativity in
B(⊕). The commutative property in B(⊕) also follows from the commutative property in V (⊕).

Theorem 4. Let V (⊕) an abelian group and suppose B(◦) ⊂ Aut V (⊕) is a balanced, closed and commutative
set of automorphisms with composition. Suppose B(⊕) is balanced and closed with addition. Then B(⊕, ◦) is a
field, and V (⊕) is a linear space over the field of automorphisms B. The elements of V (⊕) are called vectors.

7

Proof. With respect to composition, it is sufficient to verify B(◦) is balanced, closed and abelian. From the third
part of Theorem 3, it is concluded B(◦) is an abelian subgroup of Aut V (⊕). If the conditions of the Lemma
hold, then B(⊕) is a group. Now it will be shown the distributive property holds. This is the simple statement
that ◦f is a homomorphism on B(⊕), which is expressed by f ◦(g⊕h) = (f ◦g)⊕(f ◦h) for every f, g, h ∈ B(⊕, ◦).
Let x ∈ V , then

(f ◦ (g ⊕ h))(x) = f(g(x)⊕ h(x))

= f(g(x))⊕ f(h(x))

= (f ◦ g)(x)⊕ (f ◦ h)(x)
= ((f ◦ g)⊕ (f ◦ h))(x).

This proves B(⊕, ◦) is a field. Now it will be proven the structure of a linear space, in the classic sense, has
been defined. The scalar product is simply the application of an automorphism to a vector. Let f ∈ B, then
the scalar product of f , with a vector v ∈ V , is defined as f · v = f(v). First, (f ◦ g)(v) = f(g(v)) = f · (g · v)
because ◦ is the product of the field. Also, f · (u⊕ v) = (f · u)⊕ (f · v) because f ∈ Aut V (⊕). By definition of
addition of functions, (f ⊕ g) · v = (f · v)⊕ (g · v). A linear space is defined by an abelian group V and a set of
automorphisms (of V) that form a field.

Similarly define a module M over a ring.

Theorem 5. Let M(⊕) an abelian group and suppose B(◦) ⊂ Hom(M,M) is a closed set of homomorphisms
with composition, and idM ∈ B(◦). Suppose B(⊕) is balanced and closed. Then B(⊕, ◦) is a ring. The group
M(⊕) is a module over the ring of homomorphisms B. In general, the group B(◦) is not abelian.

2 Finite Sets and Natural Numbers

Finding mathematical objects that satisfy the properties of order and operation for natural and real numbers is
not an easy task. This problem was taken up by many mathematicians at the beginning of the last century to
formalize arithmetic and analysis. The solution was found that the statements of arithmetic, and later analysis,
can be formulated using an elementary concept, set. Attempts were made to find set representations of numbers
and to model the structure of natural numbers, using sets. Being an elementary concept, a set is not described in
terms of other mathematical objects. Rather, mathematical objects are described using the language of sets. A
set is a special kind of collection of objects. However, in order to avoid paradoxes, the notions of naive set theory
had to be formalized. A formal system consists of a formal language (alphabet and grammar), and a deductive
system (logical axioms and inference rules). The alphabet is made up of letters a, b, c, . . . , A,B,C, . . . used for
representing the objects in question, and logical symbols necessary for the deductive system. In formalizing
mathematics a logical approach is used, and the definition of formal system provides an abstract space for
unintelligent/mechanized manipulation of symbols. A logical system is a formal system together with a set of
non-logical axioms, and where the inference rules are first order logic or higher order logic. A classic example of a
logical system is the Peano Arithmetic System. Even though the Peano Arithmetic System appeared to be sound
at the beginning, many fatal flaws were pointed out in time. Extreme examples of these are Gödel’s theorems.
But, a simple and philosophical problem with the Peano axiomatization of natural numbers was that it did not
provide answer to the question of what a number is. The entire edifice of mathematical objects is constructed
based on the supposition of existence of 0, without saying exactly what object, if any, it is. The entirety of
objects have their existence dependent on the existence of the object 0. If 0 exists then everything exists. That
is why an even more foundational approach was given to the formalization of mathematics. The formal system
of Collections which uses the letters a, b, c, . . . , A,B,C . . . for collections. There is a single elementary binary
relation. The symbol ∈ is used for the binary relation of contention and the statement that a collection x is
element of a collection X is represented with the symbol x ∈ X. Suppose the basic definitions for collections such
as sub collection, arbitrary union of collections, arbitrary intersection of collections. A Set Theory is a logical
system formed from the formal system of collections, plus non-logical axioms of set theory. Here, a set theory
is proposed as a canonical basis for mathematics, in a non rigorous manner. It is similar to Zermelo-Fraenkel
Set Theory but some of the set axioms are presented differently to construct natural numbers alternatively to
Peano’s Axioms, rendering simpler proofs, constructions and a range of practical applications.

8

The Zermelo-Fraenkel and Von Neumann constructions of natural numbers are the two most widely used
definitions of natural numbers. In both cases, natural numbers are hereditarily finite sets and it can be proven
that these sets satisfy Peano’s Axioms. The set of all hereditarily finite sets, denoted HFS, consists of the sets
obtained through the following procedure. The empty set is a member, ∅ ∈ HFS. Also, if x1, x2, . . . , xn are
objects in HFS then {x1, x2, . . . , xn} ∈ HFS. Construct sets using these parameters to obtain all hereditarily
finite sets. The collection {∅} is an object in HFS. Since ∅ and {∅} are in HFS the collection of these two
objects, {∅, {∅}}, is also in HFS. Then, take ∅ and {∅, {∅}} to find {∅, {∅, {∅}}} ∈ HFS. The sets {∅} and
{∅, {∅}} help construct the set {{∅}, {∅, {∅}}} ∈ HFS, etc. The first difficulty to formalize mathematics is
to order hereditarily finite sets as natural numbers. The original methods are briefly discussed below, but
it has been noted many times in the literature that these proofs and constructions of classic mathematical
objects is quite long and cumbersome and involves artificial constructions. This leads to a lack of interest and
basic comprehension from most mathematicians towards the axiomatic method and foundations of mathematics.
Consequently, most mathematicians have a gap in the understanding of the nature of numbers, the basic blocks
of mathematics. The mathematician probably knows that natural numbers can be built up in terms of finite
sets, and that real numbers can be built using Cauchy Sequences of rationals, or Dedekind cuts, etc., but the
conceptual understanding of these objects called numbers is difficult to grasp and widely considered to lack
importance. Numbers are understood in terms of their interpretation as numbers, but hardly as objects in of
themselves. The mathematical consensus is that the nature of a number is not important. It does not matter if
we use one construction or another, what matters is that these constructions all describe objects whose properties
and rules we can verify to satisfy the prerequisites of being a model of numbers. All that matters is that it can
be done. It is known that any arithmetic axiomatization in first order logic is semantically incomplete but it is
not generally true that the unprovable theorems for one axiomatization will be the same unprovable theorems
for another axiomatization. One thing that is certain, however, is that different axiomatizations of numbers lead
to different proof complexities for different theorems. In the two traditional constructions of natural numbers
(Z-F and VN), discussed below, there are some advantages of one particular construction over the other in some
aspects, and vice-versa. Here the argument is made that their exists a canonical set theory that yields new results
and transparent proofs in many fundamental areas of mathematics including group theory, discrete mathematics,
analysis, data types and computer science, among other areas. Definitions connecting these theories become
apparent from the number construction proposed. A computable and meaningful function ⊕1 : HFS → HFS
that defines the order and operations of natural numbers will be the corner stone of our construction of natural
numbers. Real numbers, and all other object types will be described in terms of natural numbers in a way that
compuatble and meaningful representations and results of these objects can be given using the smallest possible
data types.

The solution Zermelo and Fraenkel found is to order a sub collection of HFS. Notice it is trivial to order the
sets ∅, {∅}, {{∅}}, {{{∅}}}, . . ., all of which are elements of HFS. If x ∈ HFS, then {x} ∈ HFS is the successor.
The order of natural numbers is trivially defined for N< = {∅, {∅}, {{∅}}, {{{∅}}}, . . .}. Addition of these sets
has to be defined in such a way that it serves as a model of addition of natural numbers. This simply means
the operation of addition has to be defined and its properties proven, which is usually tedious and laborious.
But, the real difficulty arises in understanding the constructions and objects used to describe more complicated
structures such as the integer numbers, rational numbers, and real numbers. Integers are described in terms of
natural numbers. Rational numbers are described in terms of integers, and real numbers are defined in terms
of rational numbers. The last step, in building real numbers, involves objects that are difficult to describe and
work with. This leads to a gap in most undergraduate students’ learning since most programs do not include
these constructions. Even modern day efforts to describe the real number system do not provide an easy way to
understand the nature of the object called real number.

A second approach in the formal description of natural numbers is due to Von Neumann. He also orders a sub-
set ofHFS. In particular, the sets ∅ < {∅} < {∅, {∅}} < {∅, {∅}, {∅, {∅}}} < {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
If x is a natural number, its successor x+1 is the set {0, 1, 2, . . . , x}. Here, x < y if x ∈ y which has some advan-
tage in defining and proving properties of the order and addition. However, when building the later numerical
structures, there is a similar situation as in the Zermelo-Fraenkel theory. The greater difficulty arises in building
integers, rational numbers and real numbers. The constructions of Z-F and VN, and their technical aspects can
be consulted in [Bernays(1991)].

The fact that there is at least two different constructions, gave way to another question, formally referred
to as Benaceraff’s Identification Problem. It has a great deal to do more with the Philosophy of Mathematics,

9

than the mathematical models in use, but it still has wide implications. The main statement is set forth in
a publication titled “What Numbers Could Not Be”, [Benacerraf(1965)]. The argument is made that numbers
are actually not sets because there is no absolute way of describing them in terms of sets. For example, it
cannot be known what object the number 3 is. Zermelo-Fraenkel say 3 = {{{∅}}}, but Von Neumann says
3 = {∅, {∅}, {∅, {∅}}}. Who is to be believed? In fact, there are infinitely many consistent set constructions of
natural numbers. Are all these constructions on the same standing? Or are some more convenient than others?
Both Z-F and VN provide injective functions N → HFS. Ackermann was able to find a bijection N → HFS.
This is known as BIT-Predicate or Ackermann Coding [Ackermann(1937)], and it has practical implications since
mathematical systems can be modeled directly in terms of classic computational processes. It also referred to as
BIT-Predicate because it maps the natural number

∑
i 2

xi to the set {x1, x2, . . . , xn}. It is important to note that
Ackermann coding itself does not give means for adding numbers in any special manner. Although Ackermann
coding represents natural numbers as sets, it still treats numbers as binary sequences for purposes of addition
and uses the traditional means of operating. Namely, carry over algorithms with its intrinsic time delays. This
also makes it difficult to use Ackermann Coding as the basis for an axiomatic set theory. The reader is invited
to attempt to find a simple description of the addition operation of natural numbers, in terms of elementary set
operations. For example, the reader should try to define a computable and finite process that inputs A,B and
outputs the set A ⊕ B which is the Ackermann coding for the sum of the numbers corresopnding to A and B?
For eaxmple, if A = {∅, {∅}} = 3 and B = {{∅}} = 2, the result of the process should be 5 = {∅, {{∅}}}, and
similarly for any two sets. Solutions to this are not trivial either; remember the goal is to express the operation in
terms of elementary set operations (union and intersection of sets). This section is a proposal for a representation
of natural numbers using BIT-Predicate, but addition is defined as a finite state machine that reaches stable
state in logarithmic time, and the structure of natural numbers is defined by an alternate axiomatic base. The
addition operation defined for sets can be easily extended from natural numbers to real numbers. A theory of
types enveloping all classic mathematical objects is briefly discussed in the conclusions for later work.

2.1 Motivation

When adding two numbers, natural or real, there is one major difficulty involved. Addition is a special
prefix problem which means that each sum bit is dependent on all equal or lower input bits, as noted in
[Ladner and Fischer(1980)]. The carrying algorithm can also be consulted in [Metropolis, Rota and Tanny(1980)].
When adding numbers in base 10 (or base b > 2), sequences of digits must be used to represent natural numbers.
To write a natural number in base b, each digit in the sequence will specify how many times the corresponding
power of b is considered; digits will take a value in {0, 1, 2, . . . , b − 1}. The order of the sequence is important
to know how many times each power of b is added. But, with binary representation (b = 2), a more elementary
language suffices. It is no longer needed to specify how many times a power is added. It is sufficient to specify
if a power is considered or not because digits of the sequence take values in {0, 1}. Essentially, this allows for
a natural number to be determined by a set of smaller natural numbers; those that appear as power in binary
form. For example, the number 7 = 20 + 21 + 22 is the set {0, 1, 2}.

In this proposal, addition is treated in terms of sets, and not sequences. The sum 7 + 13 = (20 + 21 +
22) + (20 + 22 + 23), is the sum of sets {0, 1, 2} ⊕ {0, 2, 3}. Two new sets are formed - symmetric difference and
intersection. The powers that are not repeated {1, 3}, and the powers that repeat {0, 2}. To add a power of
2 with itself (i.e., numbers in the intersection), add “1” to that power, 2n + 2n = 2n+1. The sum is rewritten
as 7 + 13 = (21 + 23) + (20+1 + 22+1). The first term 21 + 23 represents symmetric difference A△B, while the
second term 20+1 + 22+1 = (20 + 22) + (20 + 22) represents the intersection. The sum has been reduced to
7 + 13 = (21 + 23) + (21 + 23). This step is iterated and the result is 7 + 13 = 21+1 + 23+1 = 22 + 24 = 20. The
system has reached a stable state because there are no more repeated powers, {0, 1, 2} ⊕ {0, 2, 3} = {2, 4}.

This addition of finite sets is isomorphic to addition of natural numbers. To perform the addition of A,B
form two new sets A′ = A△B and B′ = s(A ∩ B), where s is the function that adds 1 to the elements of its
argument. The addition of these two new sets is the same as the original addition A⊕B = A′ ⊕B′ because it is
equivalent to a rearrangement of the powers of 2. The terms A,B are rearranged into two new terms. The term
A′ consists of the non repeated powers (symmetric difference) and the term B′ consists of the repeated powers
(intersection). It is guaranteed that in a finite number of iterations the intersection A(k) ∩B(k) = ∅ becomes the
empty set. This yields the final answer A(k+1), because A⊕B = A(k+1) ⊕B(k+1) = A(k+1) ⊕ s(∅) = A(k+1).

Apply this reasoning with another example, 15 + 23 = 38, from Figure 1. This is the addition A ⊕ B =

10

Figure 1: Graphic Representation of 15+23 = 38. The sum of two sets is a process that ends in finite steps. The
addition is iterated a finite number of times before the system stabilizes. In this example, the system stabilizes
after three iterations. Observe that two disjoint set numbers form a stable system. This means A⊕B = A ∪B
if A ∩B = ∅; the sum of disjoint sets coincides with the union.

{0, 1, 2, 3}⊕ {0, 1, 2, 4} because 15 = 20 +21 +22 +23 and 23 = 20 +21 +22 +24. First find A′ = A△B = {3, 4}
and A ∩ B = {0, 1, 2}, so that B′ = {0 + 1, 1 + 1, 2 + 1} = {1, 2, 3}. Iterate the process with A′′ = A′△B′ =
{1, 2, 4} and B′′ = s(A′ ∩ B′) = {3 + 1} = {4}. Continuing in this manner, a stable state is reached because
A′′′ ∩B′′′ = {1, 2} ∩ {5} = ∅.

The process described herein is a finite state machine. Each state is composed of two columns. Each column
is a finite configuration of energy-levels representing one natural number, as is illustrated in Figure 1. A particle
in the basic level “0” is worth 1 unit, and a particle in level “1” is worth 2 units. A particle in level “2” is worth
4 units, and in general a particle in level “n” is worth 2n units. A finite configuration of particles in a column
represents a set number, so that each state is a pair of natural numbers. As shown in Figure 1, the initial state
S(t0) is given by the inputs A,B. The next state, S(t1) is given by two new columns. The configuration of the
left column is given by the energy levels that were not repeated in state S(t0). The right column in S(t1) is given
by the objects that repeat but displaced one level up. The configuration of state S(t2) is defined similarly in
terms of state S(t1). The left column of state S(t2) is given by the energy levels not repeated in state S(t1). The
configuration in the right column of state S(t2) is given by the energy levels repeated in state S(t1) but displaced
one level up. In general, the left column of state S(tk+1) is given by the energy levels not repeated in state S(tk).
The right column of state S(tk+1) is given by a displacement, one level up, of the energy levels repeated in state
S(tk). In a finite number of steps, a stable state is reached, where no particle occupies the right column. The
result of the sum is given in the left column.

It should not be difficult for the reader to prove the number of steps to reach stability is bounded above by
max(A ∪ B) + 2. The addition A ⊕ B = {0, 1, 2} ⊕ {0} is one case that reaches the stable state in four steps
(worst case scenario). Adding a unit to the string, {0, 1, 2, . . . , k} ⊕ {0}, gives the trivial result {k + 1} in k + 2
steps. This is the set number expression for the equivalent arithmetical expression 1 + (1 + 2 + 4 + . . . + 2k) =
2k+1. In general, {n, n + 1, n + 2, . . . , n + k} ⊕ {n} = {n + k + 1} is equivalent to the arithmetical expression
2n + (2n + 2n+1 + 2n+2 + . . .+ 2n+k) = 2n+k+1. In fact, this type of string allows us to calculate the iterations
for stability given a sum of two numbers. The longest string will give us the total number of iterations before
stability. Going back to the bound on the number of iterations, it can be easily seen that it actually does not
depend on the maximum value of the set. A more precise bound can be obtained. For example, the number of
iterations for calculating {0, 1} ⊕ {0} is equal to the number of iterations for calculating {5, 6} ⊕ {5}. However,
the bounds are two very different numbers max{0, 1} and max{5, 6}. To come up with a better bound on the
number of iterations, observe that the number of iterations does not need to depend on how large the numbers
are. To understand this, build a worst case scenario. Let A,B two sets such that #(A) + #(B) = 3. If the
intersection A∩B = ∅ is empty, the system is stable from the initial state. To maximize the number of iterations,
build a string as above, A = {n, n+1} and place the third element in the bottom B = {n}. This system requires
a total of two iterations to stabilize. Any other configuration of three elements will require at most one iteration
to stabilize. Now, suppose a total of k+2 objects; #(A)+#(B) = k+2. A string provides a worst case scenario;
a string plus the smallest number of the string. The sum A⊕B = {n, n+1, . . . , n+k}⊕{n} takes a total of k+2
iterations to reach stability because of the string. Now, it is easy to see that there is more than one worst case

11

scenario. Change one of the elements from A, to the set B, and the number of iterations will be the same. Doing
this with n+ 1, the result is {n, n+ 2, n+ 3, . . . , n+ k} ⊕ {n, n+ 1} which will take k+ 2 iterations to stabilize.
This can be done with any of the elements of A, and with more than one. In general, if A△B = {n+1, . . . , n+k}
and A∩B = {n}, then exactly k+2 iterations are needed to stabilize. More generally, two sets with non empty
intersection will have at least one string of this form. The longest of such strings will determine the smallest
number of iterations needed for stability.

Suppose A,B ⊆ {0, 1, 2, . . . , N − 1} are two random set numbers and let x ≤ N − 1. The probability that
x ∈ A△B is equal to 2

4 = 1
2 . Then, the probability P that there exist n, k ∈ N such that {n+1, . . . , n+k} ⊆ A△B,

is equal to the probability of k consecutive heads in N fair coin tosses. Therefore, the probability of a N -bit
addition taking k ≤ N iterations to complete, is equal to P

4 . On average, it takes log2 N iterations to calculate a
N -bit addition. The probability of taking more iterations than log2 N decreases fast. These coin toss problems
are standard. A Simple and Linear Fast Adder (Patent Pending) is described in the first appendix.

In the next subsection addition is formalized for finite sets, and it is isomorphic to addition of natural numbers
N+. In the first section, a definition of operation was given that does not use a cartesian product in the domain.
An operation is a function whose image is a space of functions itself. It is a one-to-one function ∗ : A → (AfA)
into the set AfA. The image, AfA, is the set of all one-to-one functions of the form A → A. The operation ⊕
that defines addition of sets is defined in terms of its operation functions ⊕n by ⊕n(x) = n⊕x. The function ⊕1
generates the hereditarily finite sets, and it also generates the set of operation functions ⊕n. The functions ⊕n
are the powers of composition, ⊕2 = ⊕1 ◦⊕1, ⊕3 = ⊕1 ◦⊕1 ◦⊕1, etc. Define two base cases 0 = ∅ and 1 = {∅},
along with a function ⊕1 : HFS → HFS. To add 1 to a set A, apply the function ⊕1 to the set A,

⊕1(A) = (A△1)⊕ s(A ∩ 1), (3)

where s : HFS → HFS sends every set X = {x}x∈X to the set s(X) = {⊕1(x)}x∈X . Applying the function s
to the set X simply means ⊕1 is applied to every object of X. In the following calculations, use the fact that
s(∅) = ∅. Furthermore, define A⊕ ∅ = ∅ ⊕ A = A which simply defines ∅ as the identity element. First, use the
definition of the operation to find ⊕1(0) = (0△1)⊕ s(0 ∩ 1) = 1⊕ s(∅) = 1⊕ ∅ = 1. The function ⊕1 generates
every element of HFS when applied successively.

2 = ⊕1(1) = (1△1)⊕ s(1 ∩ 1) = ∅ ⊕ s(1) = s(1) = {⊕1(0)} = {1}
3 = ⊕1(2) = (2△1)⊕ s(2 ∩ 1) = ({1}△{0})⊕ s({1} ∩ {0}) = {0, 1} ⊕ s(∅)

= {0, 1} ⊕ ∅ = {0, 1}
4 = ⊕1(3) = (3△1)⊕ s(3 ∩ 1) = ({0, 1}△{0})⊕ s({0, 1} ∩ {0}) = {1} ⊕ s({0})

= {1} ⊕ {⊕1(0)} = {1} ⊕ {1}

A suitable definition for {1} ⊕ {1} must be found, and in general a suitable definition for A ⊕ B is needed.
Extend the definition in the obvious way,

A⊕B = (A△B)⊕ s(A ∩B).

Now the number 4 can be found.

2⊕ 2 = (2△2)⊕ s(2 ∩ 2) = ∅ ⊕ s(2) = s(2) = {⊕1(1)} = {2}.

This simply means the set {2} = {{1}} = {{{∅}}} is the object known as the number 4. Continue to generate
sets, by applying the function ⊕1 to the result.

12

5 = ⊕1(4) = (4△1)⊕ s(4 ∩ 1) = {0, 2} ⊕ s(∅) = {0, 2}
6 = ⊕1(5) = (5△1)⊕ s(5 ∩ 1) = {2} ⊕ s{0} = {2} ⊕ {1} = ({2}△{1})⊕ s({2} ∩ {1})

= {1, 2} ⊕ s(∅) = {1, 2}
7 = ⊕1(6) = (6△1)⊕ s(6 ∩ 1) = {0, 1, 2} ⊕ s(∅) = {0, 1, 2}
8 = ⊕1(7) = (7△1)⊕ s(7 ∩ 1) = {1, 2} ⊕ s({0}) = {1, 2} ⊕ {1}

= ({1, 2}△{1})⊕ s({1, 2} ∩ {1}) = {2} ⊕ s({1}) = {2} ⊕ {2}
= ({2}△{2})⊕ s({2} ∩ {2}) = ∅ ⊕ s{2} = s({2}) = {3}

9 = ⊕1(8) = (8△1)⊕ s(8 ∩ 1) = {0, 3} ⊕ s(∅) = {0, 3}
10 = ⊕1(9) = (9△1)⊕ s(9 ∩ 1) = {3} ⊕ s({0}) = {3} ⊕ {1} = ({3}△{1})⊕ s({3} ∩ {1})

= {1, 3} ⊕ s(∅) = {1, 3}.

Notice, that the sum of two disjoint sets is the union. When referring to hereditarily finite sets, in this manner,

they are called set numbers. Let N be a natural number with binary representation
n∑

i=1

2ai , then N is the set

number {a1, a2, . . . , an}. For example, 5 = {0, 2} because 5 = 20 +22, while 6 = {1, 2} because 6 = 21 +22. The
number 11 = {0, 1, 3} can easily be found.

11 = 5⊕ 6 = {0, 2} ⊕ {1, 2} = {0, 1} ⊕ s({2}) = {0, 1} ⊕ {3} = {0, 1, 3}.

Another way of finding 11 is with the addition

11 = 7⊕ 4 = {0, 1, 2} ⊕ {2} = {0, 1} ⊕ s({2}) = {0, 1, 3}.

2.2 Formalization

The constructions here described are carried out in a slightly modified version of Zermelo-Fraenkel Set Theory.
The axioms needed for the constructions of this section are listed. The Axiom of Extensionality which defines
equality of sets; two sets are equal if and only if they contain the same elements. The Axioms of Union and
Subsets are also included; the Axiom of Subsets allows the construction of the intersection of sets.

To construct all hereditarily finite sets, from the empty set, their is a well defined procedure. Their exists a set
N such that ∅ ∈ N, and if x1, x2, . . . , xn are elements of N then {x1, x2, . . . , xn} ∈ N. However, the objects of HFS
are not generated in a particular order; there is no canonical order in constructing hereditarily finite sets. There
are infinite ways of building these sets one by one. For example, once the sets ∅ and {∅} have been found, the sets
{{∅}} and {∅, {∅}} can be constructed. It is quite clear that 0 should be ∅ and 1 should be {∅}. But, which of the
two new sets should be the number 2? Ackermann Coding establishes that the number 2 is the set {{∅}}, and 3
is the set {∅, {∅}}. Notice a fundamental difference the Ackermann Coding has with Z-F and VN constructions.
Adding one unit to a Z-F or VN natural number is a simple procedure. In the first case, {x} is the successor
x, and in the second case the successor is x ∪ {x}. With Ackermann Coding the situation is different because
the rule for building new sets does not give an order to the sets built. Ackermann Coding builds sets without
ordering them. To know the order of the hereditarily finite sets being built (the natural number corresponding
to each element of HFS), the binary representation of natural numbers has to be known beforehand. The order
given to finite sets is known only in hindsight when the binary representations of natural numbers is worked out.
This was the difficulty in using Ackermann Coding as an axiomatic base of natural numbers. The problem with
this was that there was no simple description of addition in terms of set operations. Numbers had to be operated
as binary sequences which takes several layers of set theoretical constructions making the formalization long and
difficult. The function ⊕1 provided here is the first proposal found in the literature of a computable function that
determines the Ackermann Coding successor of a hereditarily finite set, in terms of elementary set operations. A
recursive set function ⊕1 is proposed that defines addition of natural numbers in BIT-Predicate. This function
depends on union and intersection of sets in HFS (the symmetric difference of sets can be expressed in terms
of union and intersection). The set representation of every natural number is obtained by applying the function

13

⊕1 to ∅, a finite number of times. Moreover, the addition of two N -bit numbers is a finite state machine that
reaches a stable state in log2 N iterations, on average. For practical purposes in the implementation of addition
in digital circuits, the Ackermann Coding of numbers is the most convenient and has therefore been referred to
as BIT-Predicate. However, two natural numbers given in binary form are added with the carry-over algorithm
which treats natural numbers as binary sequences, which introduces an intrinsic carry-over delay. These delays
can be overcome with parallel computing algorithms but at a huge area and energy consumption cost, among
other problems. An alternative method for parallel addition is given here that can be implemented with a simple
and linear circuit with low-energy consumption; the patent-pending SLFA is found in the first appendix.

Definition 6. Let 0 = ∅ ∈ HFS and 1 = {∅} ∈ HFS. Define the set operation m⊕ n with operation functions
⊕n : HFS → HFS such that ⊕n(m) = m ⊕ n = (m△n) ⊕ s(m ∩ n), where s(m ∩ n) = {⊕1(x)}x∈m∩n. In
particular, the function ⊕1 acts on sets by ⊕1(m) = (m△{∅})⊕ s(m ∩ {∅}).

Let n ∈ HFS be the set obtained from ⊕1(⊕1(· · · (⊕1(0))) = ⊕1 ◦ ⊕1 ◦ · · · ◦ ⊕1(0). This can be expressed as
n = ⊕1n(0).

An axiom is also needed to ensure natural numbers are infinite. The infinity axiom proposed here is given in
terms of a bijection ⊕1. Let N = HFS, and N1 = HFS/{∅} the set of hereditarily finite sets without the empty
set. The Infinity Axiom is the statement that the function ⊕1 : N → N1 is a bijection. This ensures the sets
generated are infinite. The object 0 is sent to the object 1. Since 0 is not in the image set, it is not the image
of 1. Also 1 cannot be the image of 1 because it is already the image of 0. This means a new object, call it 2, is
the image of 1. The argument continues in this manner to prove there are infinitely many natural numbers. The
set of arrows of 0 → 1 → 2 → 3 → · · · are the ordered pairs of the function ⊕ that adds one unit, x → x ⊕ 1.
If this set of arrows is extended to include transitive arrows, then the arrows give the total order of the natural
numbers. The functions ⊕1n and ⊕n are both assigned to n = ⊕1n(0). The equality ⊕n = ⊕1n is taken as an
axiom, for every n ∈ N.

It is proven below that the operation functions ⊕1n satisfy the properties of commutativity and associativity.
To complete the operation of addition in terms of operation functions, the identity function is assigned to the
empty set so that ⊕0(m) = m for every m ∈ HFS. In the last sub section it has been illustrated how to
find ⊕1(1), ⊕1(2), When carrying out the calculations for 3 ⊕ 1, it was recognized that it is necessary to
know the value of ⊕2(2). Continuing to apply ⊕1, more calculations of the form ⊕n(m) are encountered. But,
the operation function for ⊕n is explicitly dependent of ⊕1. The functions ⊕1n are defined as powers of ⊕1,
but to find ⊕1 it is also needed to start finding ⊕n. The operation functions ⊕1n and ⊕n build each other
simultaneously, as has been seen in the calculations of the previous section. The commutative property of ⊕ is
trivial, using the fact that fn ◦ fm = fm ◦ fn for a function f . Addition is m ⊕ n = ⊕n(m) = ⊕n(⊕m(0)) =
⊕1n(⊕1m(0)) = ⊕1m(⊕1n(0)) = n ⊕m. The reader may skip the proofs below, through Proposition 5, to the
description of addition of several inputs and multiplication.

The easiest way to prove associative property of set addition is to prove the functions ⊕m and ⊕̄n commute,
for every set numbers m,n. Given that commutativity holds, it is true that ⊕n = ⊕̄n. Because of Proposition 3,
it is sufficient to prove the commutative property holds for operation functions, ⊕m ◦ ⊕n = ⊕n ◦ ⊕m.

Proposition 4. The associative property holds for ⊕.

Proof. By definition, the function ⊕n is the function ⊕1 applied a total of n times, ⊕n(a) = ⊕1n(a). The
operation functions ⊕m, ⊕n commute,

(⊕n ◦ ⊕m)(a) = ⊕n(⊕m(a))

= ⊕1n(⊕1m(a))

= ⊕1m(⊕1n(a))

= ⊕m(⊕n(a))

= (⊕m ◦ ⊕n)(a).

A linear order has been given 0 →⊕1 1 →⊕1 2 →⊕1 3 →⊕1 4 →⊕1 · · · , in terms of addition. The transitive
arrows are aggregated to the set of arrows that defines the operation function ⊕1. For example, since 0 → 1 is

14

an arrow of ⊕1, and 1 → 2 is an arrow of ⊕1, then 0 → 2 is a transitive arrow. In the next section it will be
specified exactly what is meant by an arrow or an ordered pair.

Let A,B two set numbers, then A < B is true if and only if there exists a set number m ̸= ∅ such that
B = A⊕m. Applying ⊕n to B,

B ⊕ n = ⊕n(A⊕m) = ⊕n(⊕m(A)) = ⊕m(⊕n(A)) = ⊕m(A⊕ n) = (A⊕ n)⊕m.

This implies A ⊕ n < B ⊕ n. That is to say, the operation preserves the order; A < B implies A ⊕ n < B ⊕ n.
The order is obviously transitive. Let B = A⊕m and C = B ⊕ n. Then C = (A⊕m)⊕ n = A⊕ (m⊕ n). Since
m⊕ n is not the empty set, it is true that A < C.

The following result provides a practical way of determining the natural order of HFS. Let A,B two distinct
natural numbers and consider their symmetric difference A△B which is not empty and is bounded. That is to
say, max(A△B) exists. Furthermore, this maximum is in exactly one of the two sets, not in both. Compare
the two sets in terms of this object, max(A△B). The set that contains this object is the largest of the two.
For example, 15 = {0, 1, 2, 3} < {4} = 16 because A△B = {0, 1, 2, 3, 4} and max(A△B) ∈ {4} = 16. The set
number A = {1, 5, 6} = 98 is smaller than the set number B = {0, 7} = 129 because max(A△B) = 7 ∈ B. In
the following proof it will be seen that the order is anti symmetric. It will also be seen that every pair of set
numbers A,B is comparable; the order is total.

Theorem 6. Let A,B two set numbers, then A < B if and only if max(A△B) ∈ B.

Proof. Let A = {a1, a2, . . . , an} be a set number, and suppose B is a set number such that A < B. From (A5),
the set number B is obtained by successively adding 1 to the set number A. This means B = ⊕1n(A) for some
n ∈ N. It will be proven max(A△B) ∈ B for every B > A. In this proof, the fact that A ⊕ B = A ∪ B, if
A ∩B = ∅, will be used. Start with A⊕ 1 = {a1, a2, . . . , an} ⊕ {0}. There are two cases; 0 /∈ A or 0 ∈ A. In the
first case, A ⊕ 1 = {0, a1, a2, . . . an} which implies max(A△(A ⊕ 1)) = max{0} = 0 ∈ A ⊕ 1. Now consider the
second case; suppose a1 = 0. Then, A ⊕ 1 = {0, a2, . . . , an} ⊕ {0} = {a2, a3, . . . , an} ⊕ {1}. There are two sub
cases; 1 /∈ A or 1 ∈ A. In the first case, A ⊕ 1 = {1, a2, a3, . . . , an} and the result follows, max(A△(A ⊕ 1)) =
max{0, 1} = 1 ∈ A⊕ 1. In the second case, a2 = 1 and this implies A⊕ 1 = {a3, a4, . . . , an} ⊕ {2}.

More generally, suppose k is the smallest number not in A. Then, A = {0, 1, . . . , k − 1, ak+1, ak+2, . . . , an},
where k < ak+1 < ak+2 < . . . < an. Applying ⊕1 yields

A⊕ 1 = {k, ak+1, ak+2, . . . , an}.

Then max(A△(A⊕ 1)) = k, which proves max(A△(A⊕ 1)) ∈ A⊕ 1. Applying ⊕1 again, the result is

A⊕ 2 = {k, ak+1, ak+2, . . . , an} ⊕ {0} = {0, k, ak+1, ak+2, . . . , an}.

This means A△(A ⊕ 2) = {1, 2, . . . , k} and the maximum is k ∈ A ⊕ 2. Adding a unit again gives A ⊕ 3 =
{1, k, ak+1, ak+2, . . . , an}, which then implies the symmetric difference is A△(A⊕3) = {0, 2, 3, . . . , k} with maxi-
mum in A⊕ 3. Then, A⊕ 4 = {0, 1, k, ak+1, ak+2, . . . , an} and symmetric difference A△(A⊕ 4) = {2, 3, 4, . . . , k}.
Continue in this manner, applying ⊕1, until it has been applied a total of 2k − 1 times. In each step, the set A
will be smaller than. Thus far, it has been proven max(A△B) ∈ B if A < B < A⊕2k. Applying ⊕1 once more, is
simply adding the singleton 2k = {k} to the set A. The result is A⊕2k = {0, 1, . . . , k, ak+1, ak+2, . . . , an} because
k is the smallest object not in A. This implies max(A△(A ⊕ 2k)) = max{k} = k ∈ A ⊕ 2k. It is concluded
max(A△B) ∈ B if A < B ≤ A ⊕ 2k. The careful reader will notice the elevator argument, or an induction
hypothesis is needed to justify this argument. The rest is a repetition of what has been done up to this point. To
apply ⊕1 to A⊕2k, simply substitute all the elements 0, 1, . . . , k with k+1; use 2k+1 = 1+(1+2+4+8+· · ·+2k).
There are two cases; k+1 /∈ A or k+1 ∈ A. In the first case, max(A△(A⊕2k⊕1)) = k+1 ∈ A⊕2k⊕1 because
A⊕ 2k ⊕ 1 = {k + 1, ak+1, ak+2, . . . , an}. In the second case, ak+1 = k + 1 so that

A⊕ 2k ⊕ 1 = {k + 1, ak+2, . . . , an} ⊕ {k + 1}.

Proceed as before, finding the second smallest number not in A. Let p ∈ A the smallest number in A−{k}. The
numbers k, p are the two smallest numbers not in A, so that A = {0, 1, . . . , k−1, k+1, k+2, . . . , p−1, ap, . . . , an}.
This implies (A⊕2k)⊕1 = {p, ap, . . . , an}. The symmetric difference with A is {0, 1, . . . , k−1, k+1, . . . , p}. The
maximum of the symmetric difference is p ∈ (A⊕2k)⊕1. This proves max(A△B) ∈ B if A < B ≤ (A⊕2k)⊕1. The

15

symmetric difference of (A⊕2k⊕1)⊕1 = {0, p, ap, . . . , an} with A, is {1, 2, . . . , k−1, k+1, k+2, . . . , p−1, p}. The
maximum of the symmetric difference is p ∈ (A⊕ 2k)⊕ 2. This proves max(A△B) ∈ B, if A < B ≤ (A⊕ 2k)⊕ 2.
Then, (A⊕ 2k)⊕ 3 = {1, p, ap, . . . , an}, which again gives p = max(A△(A⊕ 2k ⊕ 3)) ∈ A⊕ 2k ⊕ 3. Continue in
this manner. Apply ⊕1 to A⊕ 2k a total of 2k − 1 times before reaching

(A⊕ 2k)⊕ 2k = {0, 1, . . . , k − 1, p, ap, . . . , an}.

Here, symmetric difference is A△((A⊕ 2k)⊕ 2k) = {k+ 1, k+ 2, . . . , p}, and the maximum is p ∈ (A⊕ 2k)⊕ 2k.
This proves max(A△B) ∈ B, if A < B ≤ A⊕ 2k ⊕ 2k. Adding 1 again, gives A⊕ 2k ⊕ 2k ⊕ 1 = {k, p, ap, . . . , an}.
The symmetric difference with A is the set {k, p}. The maximum is max{k, p} = p ∈ A⊕2k⊕2k⊕1. Keep adding
1 until (A⊕ 2k)⊕ 2p = {0, 1, . . . , q− 1, an−q+1, an−q+2, . . . , an} has been reached, where A = {0, 1, . . . , k− 1, k+
1, . . . , p− 1, p+1, . . . , q− 1, aq−2, aq−1, . . . , an} and q > p is the third smallest number not in A. This continues,
for all k, p, q, . . . , r not in A. This proves max(A△B) ∈ B if A < B < A ⊕ 2k ⊕ 2p · · · ⊕ 2r. Upon adding 1 to
A⊕2k⊕2p⊕· · ·⊕2r = {0, 1, . . . , an}, the result is the singleton {an+1}. It is trivial to prove that the maximum of
the symmetric difference is in A⊕2k⊕2p · · ·⊕2r⊕1, since max(A) = {an} < {an+1} = max(A⊕2k⊕2p · · ·⊕2r⊕1).
Observe that either max(X ⊕ 1) = max(X) or max(X ⊕ 1) = max(X) + 1. Therefore, the result also holds for
any B > A⊕ 2k ⊕ 2p · · · ⊕ 2r ⊕ 1 because

max(B) ≥ max(A⊕ 2k ⊕ 2p ⊕ · · · ⊕ 2r ⊕ 1) > max(A)

.
To prove the second implication, use the following observation. Let A = {a1, a2, . . . , an} any set number, and

let b /∈ A the maximum b = max(A△B). Add 1 to the set number A repeatedly until you get to the set number
R = {b, ai1, ai2, . . . , an}, where {ai1, ai2, . . . , an} are the elements of A that are greater than b. This means a
set N exists such that R = A⊕N . Now, add P to R, where P = {b1, b2, . . . , bj} is the set of objects in B that
are smaller than b. The result is B = P ⊕R = P ⊕ (A⊕N) = A⊕ (N ⊕ P) which implies A < B.

LetA = {2, 5, 6, 8, 9} andB = {0, 1, 7, 8, 9}. The largest of the two is the set that contains max{0, 1, 2, 5, 6, 7} =
7, so that A < B. In the next sections the order of set numbers will be given in a specific form. For example,

a set number may be written in the form A = {{3, 5}, {1, 2}, {4, 6}} = 22
23+25+22

1+22+22
4+26

. Compare it with

B = {{3, 4}, {1, 2}, {5, 6}} = 22
23+24+22

1+22+22
5+26

. The order relation is A < B because max(A) = {4, 6} <
{5, 6} = max(B).

The operation function ⊕1, of Definition 6, generates all HFS when applied successively to 0. The order in
which sets are generated is an order of HFS, equivalent to the order of natural numbers N≤. The operation
function ⊕n = ⊕1n is used to define addition of sets ⊕1n(m) = m⊕ n = (m△n)⊕ s(m ∩ n).

2.3 Product of Set Numbers

The product is easy to define. Multiplication by 2 has already been defined. In binary representation 2n + 2n =
2n+1, and set numbers have a corresponding rule. To multiply by 2 is to apply the function ⊙2 = s that adds
1 to the elements of the argument. Multiplication by 4 is s ◦ s which adds 2 to the elements of the argument.
In general, multiplication of B by 2k is equal to sk(B). If B = {b1, . . . , bn} then 2k ⊙ B is equal to the set
{b⊕k}b∈B = {b1⊕k, . . . , bn⊕k}. The product of a set number B with 2k, in our graphic representation, consists
of displacing the objects of the set, k units up. The set number 2k ⊙B is the k-displacement of B. The general
product A⊙B is defined in terms of displacements of the base B, and the pivot A.

A⊙B =
⊕
a∈A

{b⊕ a}b∈B . (4)

Displacements of B are added, one for each object of the pivot A. If a ∈ A then the a-displacement of B is
one of the displacements in our sum. Notice that multiplication by 0 results in the empty set, 0⊙X = X⊙0 = 0.

16

Figure 2: The product 7⊙ 9. The first and second columns are the pivot and base, respectively. The next three
columns correspond to the displacements of the base. The last column is the sum of the displacements. The
result is equal to 63 = {0, 1, 2, 3, 4, 5}.

It is also trivial to find 1⊙X = X ⊙ 1 = X. To show that 2 = {1} is commutative under multiplication,

{1} ⊙X = {x⊕ 1}x∈X

=
⋃
x∈X

{x⊕ 1}

=
⊕
x∈X

{1⊕ x}

= X ⊙ {1}.

This means 2 ⊙ X = X ⊙ 2 = X ⊕ X. To find the product 7 · 5 = (20 + 21 + 22)(20 + 22) use distribution
to obtain 20(20 + 22) + 21(20 + 22) + 22(20 + 22). Then, (20+0 + 22+0) + (20+1 + 22+1) + (20+2 + 22+2) =
(20 + 22) + (21 + 23) + (22 + 24). Carrying out the addition gives 7 · 5 = 20 + 21 + 22 + 25 = 35. Before proving
general properties, calculate 5⊙ 15 = {0, 2}⊙ {0, 1, 2, 3} in two different ways to verify these numbers commute.
First make A = 5 and B = 15. Two displacements of B = {0, 1, 2, 3} will be added. The first displacement is
{0⊕ 0, 1⊕ 0, 2⊕ 0, 3⊕ 0} = {0, 1, 2, 3}, and the second displacement is {0⊕ 2, 1⊕ 2, 2⊕ 2, 3⊕ 2} = {2, 3, 4, 5}.
Adding the two, gives {0, 1, 2, 3} ⊕ {2, 3, 4, 5} = {0, 1, 3, 6} = 75. Now, make A = 15 and B = 5. Four
displacements of 5 = {0, 2}, each corresponding to an element of 15 = {0, 1, 2, 3}. The displacements of 5
are {0, 2}, {1, 3}, {2, 4}, {3, 5}. Adding these four displacements results in ({0, 2} ⊕ {1, 3}) ⊕ ({2, 4} ⊕ {3, 5}) =
{0, 1, 2, 3} ⊕ {2, 3, 4, 5} = 75, using associativity of addition.

Figure 2 shows the graphic representation of 7⊙9. To formalize this, first verify ⊙2 is a morphism for addition
of set numbers; verify s(A⊕ B) = s(A)⊕ s(B). Use X ⊕X = s(X) to prove s(A⊕ B) = (A⊕ B)⊕ (A⊕ B) =
(A⊕A)⊕ (B ⊕B) = s(A)⊕ s(B). This implies

sk(A⊕B) = sk(A)⊕ sk(B), (5)

for every k ∈ N. To prove the distributive property use (5) and the commutative and associative properties of
addition of sets.

A⊙ (B ⊕ C) =
⊕
a∈A

{x⊕ a}x∈B⊕C

=
⊕
a∈A

sa(B ⊕ C)

=
⊕
a∈A

(sa(B)⊕ sa(C))

=
⊕
a∈A

sa(B)⊕
⊕
a∈A

sa(C)

= (A⊙B)⊕ (A⊙ C)

To prove multiplication is commutative, let a ∈ A fixed. The set {b⊕ a}b∈B = {b1 ⊕ a, b2 ⊕ a, . . . , bn ⊕ a} =
{b1 ⊕ a} ⊕ {b2 ⊕ a} ⊕ . . .⊕ {bn ⊕ a} can be expressed as a sum of disjoint singletons,

⊕
b∈B{b⊕ a}. Therefore,

17

A⊙B =
⊕
a∈A

{b⊕ a}b∈B

=
⊕
a∈A

⊕
b∈B

{b⊕ a}

=
⊕
b∈B

⊕
a∈A

{a⊕ b}

=
⊕
b∈B

{a⊕ b}a∈A

= B ⊙A.

The commutative property of addition and multiplication of sets has been proven. Together with the dis-
tributive property, these imply

(A⊕B)⊙ C = (A⊙ C)⊕ (B ⊙ C). (6)

Now it can be proven that the associative property holds for the product of set numbers. Because of Propo-
sition 3, it is sufficient to verify the operation functions of ⊙ commute. This can easily be done using math-
ematical induction. It is trivial to verify ⊙A and ⊙B commute for N = 1; it follows from the commutative
property ⊙A ⊙ B(1) = A ⊙ B = b ⊙ A = ⊙B ⊙ A(1). Suppose ⊙A and ⊙B commute for arbitrary N , so that
A⊙ (B ⊙N) = B ⊙ (A⊙N).

(⊙A ◦ ⊙B)(N ⊕ 1) = A⊙ (B ⊙ (N ⊕ 1))

= A⊙ (B ⊙N ⊕B ⊙ 1)

= A⊙ (B ⊙N)⊕A⊙B

= B ⊙ (A⊙N)⊕B ⊙A

= B ⊙ (A⊙N ⊕A⊙ 1)

= B ⊙ (A⊙ (N ⊕ 1))

= (⊙B ◦ ⊙A)(N ⊕ 1)

This proves associativity of multiplication. The next result characterizes multiplication as a repeated addition.

Proposition 5. The operation function ⊙N acts on sets by ⊙N(X) = ⊕XN (0).

Proof. This is proven by mathematical induction on N . It is true for N = 1, since 1 ⊙ X = X. Suppose it is
true for N , then using the distributive and commutative properties

⊙(N ⊕ 1)(X) = ⊙N(X)⊕⊙1(X)

= ⊕XN (0)⊕X

= ⊕X(⊕XN (0))

= ⊕XN+1(0).

It has been seen that multiplication is equivalent to the addition of multiple displacements of a given set
number, or as the repeated addition of the same number. In ether case, it is the addition of multiple operands.
The sub unit responsible for adding the partial products is usually referred to as accumulator of partial products.
Some of the current proposals for multiplication are found in [Abrar(2019)], [Emmart(2011)], and [Taib(2020)].
A general method for defining the sum of multiple operands is proposed that has several advantages in hardware
implementation. An algorithm is described that reduces the sum of 2k summands to the sum of k+1 summands.
In general, it reduces the sum of n summands to max(n) + 1 summands. Consider the sum of 4-many, 8-bit

18

numbers. The summands are A = a0a1 · · · a7, B = b0b1 · · · b7, C = c0c1 · · · c7, D = d0d1 · · · d7. This can be
represented by the array

a7 b7 c7 d7
a6 b6 c6 d6
a5 b5 c5 d5
a4 b4 c4 d4
a3 b3 c3 d3
a2 b2 c2 d2
a1 b1 c1 d1
a0 b0 c0 d0,

where each ai, bi, ci, di is either 0 or 1. Count the number of 1’s in each row. It takes three bits to write in binary
form the number of 1’s in a single row because max(4) + 1 = 2 + 1 = 3. The number of 1’s in each row can be
represented in a 8× 3 grid,

a′7 b′7 c′7
a′6 b′6 c′6
a′5 b′5 c′5
a′4 b′4 c′4
a′3 b′3 c′3
a′2 b′2 c′2
a′1 b′1 0
a′0 0 0

(7)

The elements a′0, b
′
1, c

′
2 will be used to write the number of 1’s in row 0. The elements a′1, b

′
2, c

′
3 are used to

write the number of 1’s in row 1, and elements a′2, b
′
3, c

′
4 are used to write the number of 1’s in row 2, etc. This

maintains the representation of energy-levels and their unit value, while avoiding any intervention with totals
from one row and the another. The three column grid can be reduced to two columns, by iterating the process.
The total number of units in a single row of (7) will be represented with two bits because max(3)+1 = 1+1 = 2.
Addition of the two columns

a′′7 b′′7
a′′6 b′′6
a′′5 b′′5
a′′4 b′′4
a′′3 b′′3
a′′2 b′′2
a′′1 b′′1
a′′0 0

is equivalent to the original four-input addition. Elements a′′0 and b′′1 represent the total value of the first row in
(7). Elements a′′1 and b′′2 represent the total value of the second row, elements a′′2 and b′′3 represent the total value
of the third row, etc.

An example is provided, to find the total of A = 63 = {0, 1, 2, 3, 4, 5}, B = 37 = {0, 2, 5}, C = 21 =
{0, 2, 4}, D = 38 = {1, 2, 5}, E = 28 = {2, 3, 4}, F = 13 = {0, 2, 3}, G = 14 = {1, 2, 3}, H = 52 = {2, 4, 5}. This is
given by

1 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1
1 0 0 0 1 1 1 0
1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0
1 1 1 0 0 1 0 0.

Since there can be at most eight objects in each row, only four bits are needed per row. This means the new
grid has four columns. There is a total of 4 = {2} many number 1’s in row 0. This is represented by placing the

19

sequence of digits 0010 in the bottom most diagonal, of the new grid.

0
1 0

0 0 0
0 0 0 0.

Next, there is a total of 3 = {0, 1} number 1’s in row 1. This is represented by placing the sequence of digits
1100 in the next diagonal.

0
0 0

1 1 0
1 0 0 0
0 0 0 0.

Since there are 8 = {3} number 1’s in row 2, the sequence 0001 is placed in the next diagonal.

1
0 0

0 0 0
0 1 1 0
1 0 0 0
0 0 0 0.

Rows 3,4, and 5 have 4 = {2} number 1’s each so that the sequence 0010 is placed in each of the following
diagonals.

0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 1
0 0 0 0
0 0 0 0
0 1 1 0
1 0 0 0
0 0 0 0.

The sum of these four columns can now be reduced to the sum of three columns because three bits are enough
for representing a total of four objects per row. Row 0, of the last grid, has a total of 0 number 1’s so that the
sequence 000 is placed on the bottom diagonal.

0
0 0

0 0 0.

There is a total of 1 = {0} number 1’s in Row 1 so that the sequence 100 is placed on the next diagonal.

0
0 0

1 0 0
0 0 0.

20

Continuing in this manner gives
0 0 0
0 0 0
0 0 0
1 0 0
1 1 0
0 0 0
0 0 0
0 1 0
0 0 0
1 0 0
0 0 0.

The addition of three columns is reduced to max(3) + 1 = 2 columns,

0 0
0 0
0 0
0 0
1 1
0 0
0 0
0 0
1 0
0 0
1 0
0 0.

Applying addition of two columns gives A⊕B ⊕ · · · ⊕H = 266,

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
1 0
0 0
1 0
0 0.

The sum of n-many b-bit numbers can be computed with nb many nodes organized in a rectangular grid of size
n×b. This grid can be used to add n-many b-bit numbers, and the multiplication algorithm can also be executed.
Parallel connections (only nodes from the same row or column are connected) allow for b-many n-bit SLFAs to
perform addition of n-many b-bit numbers. The same low-powered circuit also performs parallel-multiplication
of two inputs. This modified SLFA, its connections, extensions for vector and matrix multiplication along with
case by case analysis and implementation proposals will be described in a separate paper, exclusively found in
the author’s personal web page “www.binaryprojx.com”. To add n-many b-bit numbers, b-many n-bit SLFAs
are placed side-by-side in a rectangular grid. Each node has two bits of memory belonging to the SLFA, and
requires a third bit of memory that will be referred to as the principal bit. This means each node will consist
of a three bit register and a Half Adder, maintaining the gate count and depth very low. The rectangular array
requires parallel connections between nodes of the same row or column. The principal bits of the nodes are used
for storing the initial inputs. Each SLFA will count the number of 1’s in its row; one by one, send signals of the
principal bits of that row to the SLFA. This is done in parallel so that all rows are counted at once and they

21

can each signal process termination individually. Once the elements of a row are counted, the results stored in
the SLFA will be sent to their new principal bits. In each iteration the columns with non-zero entries in their
principal bits are less. This process is iterated until only two columns are non-zero in the principal bits. Given
that this circuit performs addition of multiple inputs, it is also capable of carrying out multiplication of two
binary inputs. Additionally, the circuit is able to perform parallel addition of b-many pairs of n-bit numbers,
because each SLFA (rows) can be used as an independently-timed SLFA. The circuit is linearly scaleable in
terms of bits and inputs, it presents the minimum possible topological complexity (rectangular grid of nodes with
parallel connections), and is low-powered due to the gate depth. First, the number of 1’s in each row is counted.
This is done by sending signals from the principal bits into the the SLFA. When the i-th significant bit of a row
is sent to the SLFA, the addition that follows takes at most max(i) + 1 iterations of the SLFA, because the set
number i requires max(i) + 1 many digits to express in binary form. The worst case scenario, when adding n
inputs, occurs if a row has n-many 1′s in the principal bits. The number of steps in the worst case scenario is
bounded by max(2) +max(3) +max(4) + . . .+max(n) + n, but is much lower because most of the terms can be
bounded by smaller numbers. For example, if i is a multiple of 2, then only one iteration of the SLFA is needed
in that step. The only occasions where max(i) + 1 iterations of the SLFA are needed is if i is of the form 2k − 1,
for some k. Although PASTA adders [Rahman(2013)] are topologically equivalent to the SLFA, it is important
to note the PASTA adder is an asynchronous circuit, like most fast-adders [Franklin(1994)], and therefore it lacks
the memory units necessary for this addition of multiple inputs. The PASTA adder has multiplexers instead
of the registers used in the SLFA, making it inappropriate for implementation in this multi-operand arithmetic
architecture.

The relative efficiency of this implementation with respect to other circuits could be done by cases, in terms
of the quotient of n and b. For large b and small n, it is easy to see the advantages this circuit would have
because it calculates the total number of elements in a row, and it does all rows in parallel. The more rows
there are relative to columns the more advantage provided by this method. There is a problem when n gets too
big. When the i-th bit of a given row is sent to the SLFA for counting, the SLFA performs max(i) + 1 many
iterations. If n is too large this method will present diminishing returns, as i approaches n. However, for this
case there is an alternative. The number of summands can be reduced by half in a fixed number of steps. The
method reduces the addition of n summands to the sum of max(k) + 1. Thus, 8 summands can be reduced to
max(8) + 1 = 4 summands. If the number of summands is a multiple of 8, then this fact can be used to reduce
by half the number of summands. There is another way to reduce summands by half because 4 summands are
reduced to max(4) + 1 = 3 summands which in turn are reduced to max(2) + 1 = 2 summands. This means
that if the number of summands is a multiple of 4, then the number of summands can be reduced to half in this
manner. These alternate methods of reduction into half are achieved by rearranging the vertical and horizontal
connections of the grid. Depending on the quotient and size of n and b there will be an optimal size for reduction
of summands that minimizes time complexity, and the topology of the nodes is unchanged.

There are several benefits in using this architecture for matrix multiplication. Examples of current solutions to
matrix multiplication are proposed and referenced in [Zhang(2013)]. In the case that n = b there are advantages
to be exploited for matrix multiplication. Suppose you wish to multiply two n×n matrices and the entries of the
matrices are n/2-bit numbers. Storing the two matrices requires 2n3 memory units in a rectangular arrangement.
A logic grid of 2n3 nodes with the same rectangular form can be super-positioned on top of the memory elements.
This allows calculation of the dot product of one row and one column in the time it takes to multiply two n/2-bit
numbers, plus the time it takes to add n-many n-bit numbers. In matrix multiplication it can often be the case
that the number b of bits of the entries, is smaller than the numbers of rows and columns. Adaptations can
be made for these cases also, based on area-specific use and pipeline needs. This rectangular design of subunits
and parallel connections solves some of the basic problems with In-Situ computing [Wang(2023)]. Given the
fact that memory is hardwired in rectangular grids, but the logic for computing has many complicated patterns
and irregular connections, it is difficult to reconcile both designs in the same space. Von Neumann Arhitecture
considers memory and the ALU to be two separate parts of a CPU, at the cost of having to transfer data back
and forth between memory and logic units. In this proposal, the memory units can be placed on a bottom layer,
and the logic circuitry can be placed on a top layer. This superposition of two rectangular grids of equal size
provides a solution to some the problems related with Computing-In-Memory. The delay and energy saved by
this architecture merits further investigation and comparison [Hennessy(1990)] to other architectures.

22

2.4 Power as a Generalization of Product

It is easy to see how the relations between the operations of addition and multiplication can be generalized. The
composition powers of ⊕1 are the functions ⊕n given by ⊕n(x) = ⊕1n(x). The composition powers of ⊕x are the
functions ⊙n defined by ⊙n(x) = (⊕x)n(0). The power function will be defined similarly in terms of operation
functions ∗n such that xn = ∗n(x). The function ∗n is defined by ∗n(x) = (⊙x)n(1). In [Ramirez(2019)], there
is a description of subtraction, division and powers of set numbers. Here, an alternative definition is given for
multiplication and powers. Recall that the multiplication of two sets is given by adding all the sets of the form
{a ⊕ b}, where a ∈ A and b ∈ B. Given any a ∈ A and b ∈ B, consider the function f : {0, 1} → (A ∪ B) such
that f(0) = a and f(1) = b. Then it is true that

A⊙B =
⊕

f :{0,1}→(A∪B)

{f(0) + f(1)},

where the index f of the sum is taken over every possible function f : {0, 1} → (A ∪ B) such that f(0) ∈ A
and f(1) ∈ B. Recall that the set of numbers smaller than a fixed number is 2n − 1 = {0, 1, 2, . . . , n − 1}. The
generalized product (A1 ⊙A2 ⊙ · · · ⊙An) can be written as

⊙
i∈2n−1

Ai =
⊕

f :2n−1→A

{ ⊕
i∈2n−1

f(i)

}
,

where A =
⋃

i∈2n−1 Ai and the index f is taken over every function such that f(i) ∈ Ai. It is the addition
of singletons, and each singleton is the sum of all the objects in the image of some function f of the index.
The commutative and associative properties are trivial to prove from this definition. Changing the order for
the multiplication of the sets only changes the order in an addition of sets. This equality gives the expected
particular cases. It is easy to see that if Ak = 0, for some k, the product is 0. This is true because the sum over
the index f is empty; there is no function f such that f(k) ∈ Ak. Furthermore, if all the Ai = X are equal to
the same number, the result is Xn.

Xn =
⊕

f :2n−1→X

{ ⊕
i∈2n−1

f(i)

}
.

This expression can easily be verified to satisfy the particular cases. For example, if n = 1, then 2n− 1 = 1 =
{0}. What are all the functions of the form f : {0} → X? Obviously they are the functions of one component,
that select the objects of X. Listing them is easy. For every object x ∈ X, the function fx defined by fx(0) = x is
considered. The sum of the objects in the image is x, for every function fx. Adding all the sets corresponding to
the addition of the image, taken over every function, gives X =

⊕
x∈X{x}. It is easy to see that if X = 1 = {0}

then there is exactly one function f : 2n − 1 → X, and it is trivially defined by f(i) = 0 for every i ∈ 2n − 1.
This means the result is 1n = {0}. For X = 2{1}, again there is exactly one function but this time f(i) = 1 for
every i ∈ 2n − 1. Therefore, 2n = {n}. Up until now, 2n was just a symbol for denoting the set number {n},
but now it has acquired its traditional meaning. Now, to define X0 observe two things. The first is that 20 = 1,
and the second is that X0 is undefined with this definition. The number 20 − 1 = 0 = ∅ is the empty set so that
there are no functions f : ∅ → X. Therefore it is justified to define X0 = 1.

2.5 Integers

The structure of integers is not necessary to construct the structure of real numbers. However, a construction of
Z is provided because it introduces methods and concepts of previous and later sections. Operation functions and
their inverse functions are used to describe integers. A positive integer n ∈ Z is an operation function ⊕n, while
its negative integer -n ∈ Z is the inverse function (⊕n)−1. Notice one important fact. Negative integers can easily
be distinguished from positive integers. A negative integer is a function of the form -n : {n, n⊕1, n⊕2, . . .} → N,
while a positive integer is a function of the form n : N → {n, n ⊕ 1, n ⊕ 2, . . .}. This will have to be considered
when defining addition of integers; it does not represent any difficulty but the reader must be careful. The integer
0 is the identity function of N. The set of negative integers will be represented with the symbol −N. It will be
said that X ⊂ Z is a non negative subset of Z if −N ∩X = ∅, and the like.

23

The sum of integers is defined in the obvious way, using composition. Let m = ⊕m and n = ⊕n positive
integers. The composition of these is a positive integer. Define the addition of two positive integers by the
relation m+n = ⊕m◦⊕n. The sum, -m-n, of negative integers -m = (⊕m)−1 and -n = (⊕n)−1, is defined as the
composition of inverse functions (⊕m)−1 ◦ (⊕n)−1 = (⊕n ◦ ⊕m)−1. Given commutativity ⊕n ◦ ⊕m = ⊕m ◦ ⊕n,
it follows that -m-n is equal to the negative integer (⊕m ◦ ⊕n)−1 = -(m+n). The sum of one negative
integer -m and one positive integer n is defined as follows. There are two possible cases. If the corresponding
natural numbers satisfy m < n, there is a natural number x such that n = m + x. Define -m+n = x, where
x = ⊕x : N → {n − m,n − m + 1, n − m + 2, . . .}. In the contrary case that the natural numbers satisfy
n < m, then m = n + x for some natural number x. Define addition of these integers by -m+n = -x, where
-x = (⊕x)−1 : {m − n,m − n + 1,m − n + 2, . . .} → N. The order relation between m,n determines if -m+n
is a positive integer or a negative integer. In both cases, the relation -m+n = (⊕m)−1 ◦ ⊕n holds. But, how
is n-m defined? Consider the composition ⊕n ◦ (⊕m)−1. In both cases, m < n or n < m, the composition
is ⊕n ◦ (⊕m)−1 : {m,m + 1, . . .} → {n, n + 1, . . .}. Although ⊕n ◦ (⊕m)−1 is a well defined composition,
it is not an integer. The functions ⊕n ◦ (⊕m)−1 and (⊕m)−1 ◦ ⊕n are not the same function. However, in
the intersection of the domains, these compositions are equal functions. Thus, defining the sum of integers as
commutative, n-m = -m+n, is justified. To prove addition of integers is associative, let x,y, z integers. Eight
different cases have to be proven. The different combinations for x, y, z being positive or negative. Suppose
first, y is positive. Then, x+y = ⊕x ◦ ⊕y. Consider two sub cases. If z is positive, the associative property
holds for (x+y)+z = x+(y+z) because the associative property holds for composition of functions. Suppose
z is negative. Then (x+y)+z = z+(x+y) = z+(y+x) = (z+y)+x = x+(z+y) = x+(y+z). Going back
to the assumption of y, now suppose y is negative and x is positive. The equality (x+y)+z = (y+x)+z =
y+(x+z) = y+(z+x) = (y+z)+x = x+(y+z) holds. If x and y are negative, then x+y = ⊕x ◦ ⊕y. This
implies (x+y)+z = (⊕x◦⊕y)◦⊕z = ⊕x◦(⊕y◦⊕z) = x+(y+z). This proves addition of integers is associative.
The addition of integers 5-3 is equal to the function ⊕2, while the result of 3-5 is (⊕2)−1.

Ordering integers is natural, in this context. Two integers x,y satisfy the inequality x < y if and only if
x(n) < y(n), for any n ∈ N. For example, -5 < 2 because -5(5) = 0 < 7 = 2(5). Of course, the order is well
defined so that there is no natural number n such that 2(n) < -5(n). To prove -6 < -3 a set number in the
domain of -3 and -6 is chosen. Say, the number 6. Then, -6(6) = 0 < 3 = -3(6).

3 Finite Functions and Permutations

In this section, the set of finite functions on N is described and an injective function from this set of functions,
into the set of natural numbers is defined. The important quality of this representation is that functions are
equivalent if and only if they are represented by the same number. Natural numbers are assigned to abstract
functions, also. There will be a distinct difference when working with an abstract function or a concrete function.
When working with abstract functions, two functions are defined to have the same structure if they are assigned
the same natural number. Concrete functions, on the other hand, can have the same structure but different
numeric representation. For example, consider the functions f, g defined by

f(a) = b g(a) = a
f(b) = a g(b) = c
f(c) = c g(c) = b.

These two abstract functions have the same structure, and have the same numeric representation. They will
be considered to be the same function. However, if the objects are not abstract, so that a, b, c ∈ N take specific
values, then f, g are distinct concrete functions and they will be represented by distinct numbers. In the previous
example, let a = 3, b = 5 and c = 0. The functions f, g defined by f(3) = 5, f(5) = 3, f(0) = 0, and g(3) = 3,
g(5) = 0, g(0) = 5 are different and they will be represented by different numbers.

The set of finite functions of natural numbers is linearly ordered. Then, an equivalence definition for abstract
finite functions is given and they are also ordered linearly. A canonical order for the elements of a given abstract
finite function is also provided, and it is determined which objects of the function are equivalent. In the example,
the objects a, b, are equivalent in the function f , while c is not equivalent to another object. The objects b, c are
equivalent in the function g, and a is not equivalent to another object.

24

3.1 Ordered Pairs

To represent finite functions as natural numbers, first it is necessary to find a way of representing ordered pairs
as natural numbers. An ordered pair of natural numbers should be an object (m,n) from which two natural
numbers are represented in a predetermined order. This means that (m,n) and (n,m) should not be the same
object. The first ordered pair, (m,n), represents two natural numbers in order; first m, then n. The second
ordered pair (n,m) means first n, then m. A set of two natural numbers {X,Y } is not an ordered pair because
it is a set of two objects without a predetermined order; a collection of objects X,Y and they are not ordered.

To solve this, a method of coding an ordered pair of natural numbers using odd/even numbers to represent
the first/second component, respectively, is outlined. An odd set number is a set number A with 0 ∈ A. An
even set number is a set number B such that 0 /∈ B. Any set number X, has associated to it the odd number
s(X)⊕ 1, and the even number s(X ⊕ 1). For example, 0 is associated to the odd number s(0)⊕ 1 = 1 and the
even number s(0⊕1) = 2. The number 1 is associated the odd number s(1)⊕1 = 2⊕1 = 3 and the even number
s(1 ⊕ 1) = s(2) = 4. In general, the natural number k has odd and even representations 2k + 1 and 2(k + 1),
respectively, as shown in Table 1.

X ODD EVEN

0 1 2
1 3 4
2 5 6
3 7 8
4 9 10
5 11 12
...

...
...

Table 1: Every natural number is uniquely associated an odd and even number.

To find the odd representation of the set number X, displace the objects of X one unit up, then add the
object 0 to s(X) to obtain s(X)⊕ 1 = s(X) ∪ {0}. The even representation, s(X ⊕ 1), is obtained by displacing
the elements of x ⊕ 1 one unit up. The ordered pair (m,n) is a set number of one odd and one even number,
{2m + 1, 2(n + 1)}. This allows to differentiate the two components. The odd number represents the first
component, while the even number is used for the second component. The set number P = {2m + 1, 2(n + 1)}
is the ordered pair (m,n). The set number P = {2m + 1, 2(n + 1)} represents the ordered pair (m,n). The set
number representing (0, 0) is {1, 2} = 22(0)+1 +22(0+1) = 6. The ordered pair (4, 5) is represented by the natural
number 22(4)+1+22(5+1) = 29+212. In summary, P = {A,B} ∈ N, with 0 ∈ A and 0 /∈ B, represents the ordered
pair (m,n), where m,n ∈ N are the unique natural numbers that satisfy s(m)⊕1 = A and s(n⊕1) = B. Solving
for m,n gives m = A−1

2 and n = B
2 − 1, where X

2 = s−1(X). The function s−1 displaces the set number X one
unit down, s−1(X) = {x− 1}x∈X .

Definition 7. Consider the family of sets

(0,) = {6, 18, 66, 258, 1026, . . . , 2 + 22(n+1), . . .}
(1,) = {12, 24, 72, 264, 1032, . . . , 8 + 22(n+1), . . .}
(2,) = {36, 48, 96, 288, 1056, . . . , 32 + 22(n+1), . . .}

...
...

(m,) = {22m+1 + 4, 22m+1 + 16, . . . , 22m+1 + 22(n+1), . . .}. (8)

Any element x ∈
⋃

i(i,), in the above family of sets, is an ordered pair. The ordered pair (m,n) is the n+1-st
element of the set (m,). A finite relation is a finite subset R ⊂

⋃
i(i,); elements of R are called components.

There are a few important remarks to be made. Every ordered pair of natural numbers is identified with a
unique natural number. Two ordered pairs are the same if and only they are represented by the same set number.
And, every natural number representing an ordered pair is a multiple of 6 (the converse is obviously not true).

25

This is a good definition for ordered pairs (m,n). An ordered pair (0, n) is any element of the set (0,). The
ordered pair (0, 0) is represented by 6 = 22(0)+1 + 22(0+1), and (0, 1) is 18 = 22(0)+1 + 22(1+1). The third number
of the set (0,) represents the ordered pair (0, 2), etc. An element of (1,) is an ordered pair of the form (1, n).
The ordered pair (1, 0) is represented by 12 = 22(1)+1 +22(0+1), the first object of (1,). The ordered pair (1, 1) is
24 = 22(1)+1 + 22(1+1), the second object of (1,). The third object of (1,) represents the ordered pair (1, 2), etc.
Now, an important jump can be made, which is a continuation to the last definition. A relation will be defined.
A finite collection of ordered pairs is a natural number,

{{A1, B1}, . . . , {An, Bn}} = 22
A1+2B1

+ · · ·+ 22
An+2Bn

(9)

where Ai are odd and the Bi are even. Under this definition, a set of ordered pairs is a relation, as is usual. The
information of a finite relation is stored in a single natural number, and the structure is obtainable from that
number. The relation {(0, 0), (0, 1), (0, 2), (2, 1)} is represented by the set number

22
2(0)+1+22(0+1)

+ 22
2(0)+1+22(1+1)

+ 22
2(0)+1+22(2+1)

+ 22
2(2)+1+22(1+1)

.

Two finite relations are the same if and only if they are represented by the same natural number. For another
example, take the relation {(2, 1), (2, 2), (4, 2), (4, 4)} given by the set number

22
2(2)+1+22(1+1)

+ 22
2(2)+1+22(2+1)

+ 22
2(4)+1+22(2+1)

+ 22
2(4)+1+22(4+1)

.

This allows for finite functions to be described as natural numbers.

3.2 Concrete Functions

In this section, the definition of finite relations is used to represent a finite function of natural numbers. Going
back to the definition of relation, it is additionally required that no odd number be repeated. A finite function
is represented by a set number of the form (9), where all the Ai are distinct.

Definition 8. A function f : A → B is a set number f = {{A1, B1}, {A2, B2}, . . . , {An, Bn}} = 22
A1+2B1

+

22
A2+2B2

+ · · · + 22
An+2Bn

, where all the Ai are distinct odd numbers and Bi are even numbers. A function is
called bijective if, additionally, all the Bi are distinct. Every element of f is an arrow component. The function
f maps m 7→ n if and only if 22m+1 + 22(n+1) ∈ f .

A permutation {0, 1, 2, . . . , n} → {0, 1, 2, . . . , n} is particularly easy to identify. It is a set of n + 1 ordered
pairs, in which every element of {1, 2, 3, 4, . . . , 2n, 2n+1, 2(n+1)} appears in exactly one ordered pair. Examples
of permutations are

{{1, 2}, {3, 4}} = 22
1+22 + 22

3+24

{{1, 4}, {3, 2}} = 22
1+24 + 22

3+22

{{1, 2}, {3, 4}, {5, 6}, {7, 8}} = 22
1+22 + 22

3+24 + 22
5+26 + 22

7+28

{{1, 6}, {3, 8}, {5, 2}, {7, 4}} = 22
1+26 + 22

3+28 + 22
5+22 + 22

7+24

{{1, 4}, {3, 10}, {5, 6}, {7, 8}, {9, 2}} = 22
1+24 + 22

3+210 + 22
5+26 + 22

7+28 + 22
9+22

{{1, 6}, {3, 8}, {5, 2}, {7, 10}, {9, 4}} = 22
1+26 + 22

3+28 + 22
5+22 + 22

7+210 + 22
9+24

The first permutation is the identity permutation (0)(1). The second set number is representing the one-cycle
permutation (0, 1). The third and fourth numbers represent (0)(1)(2)(3) and (0, 2)(1, 3), respectively. The fifth
and sixth permutations are (0, 1, 4,)(2)(3), and (0, 2)(1, 3, 4). A linear order is provided for the set of finite
functions, and in particular permutations. The order is well behaved in several ways. If f : {0, 1, 2, . . . ,m} →
{0, 1, 2, . . . ,m}, and g : {0, 1, 2, . . . , n} → {0, 1, 2, . . . , n} are permutations and m < n, then the representation of
f is smaller than the representation of g. This representation is not very good for measuring how much movement
a permutation causes. This manner of assigning natural numbers to functions does not make a distinction between
functions with the same structure. For example, the functions f, g defined by f(0) = 0 and g(1) = 1 have the

26

same structure but are assigned different numbers. In the following section, this issue is addressed. A natural
number is assigned to any abstract finite function, in such a way that two functions are represented by the same
number if and only if they have the same structure. This will be taken as definition of equivalent structure for
two functions, because it gives a modulo-structure representation of concrete functions.

3.3 Abstract Functions

Consider the permutations (1, 2)(3, 4) and (1, 3)(2, 4). These will be represented by the numbers 22
3+26+22

5+24+

22
7+210 + 22

9+28 and 22
3+28 + 22

7+24 + 22
5+210 + 22

9+26 , respectively. These numbers are different. It would be
useful to have a good definition, modulo the structure, for the two functions above, so that they are assigned the
same natural number. In other words, it would be advantageous to number finite functions in such a manner
that functions with the same structure will be represented by the same natural number. Let f : A → B a
concrete function, where A,B ∈ N. The first step is to forget the numeric value assigned to the elements of the
components. This means that the sets A,B are no longer thought of as set numbers. Think of the elements of
A and B as abstract objects with a function defined on them. Every object in A ∪ B is given a non-numeric
symbol. For example, the function f defined by

f(2) = 2

f(5) = 6

f(6) = 5

f(8) = 6

f(10) = 15

depends on the distinct objects 2, 5, 6, 8, 10, 15 and it will be considered an abstract function f∗ defined by

f∗(a) = a

f∗(b) = c

f∗(c) = b (10)

f∗(d) = c

f∗(p) = q

Now, a way of assigning a natural number Nf∗ to the abstract function f∗, in a sufficiently reasonable manner,
is to be described. To do this, go back to the realm of numeric values. Take a fixed bijection η : {a, b, c, d, p, q} →
{0, 1, 2, 3, 4, 5}, and call it a naming function of f∗. Using the procedure of the last section, there is an associated
representation Nf∗(η) ∈ N that depends on the naming function η and the abstract function f∗. Now consider
the set of all representations {Nf∗(η)}η; let η variable over all possible naming functions. In the example, there
are 6! possibilities.

To find the modulo-structure representation of a concrete function f , first find the abstract function f∗

corresponding to f , then proceeded to find all the possible naming functions of f∗. There is a total of #(A ∪
B)! naming functions. Each naming function η provides a representation Nf∗(η), so that there is a set of
representations {Nf∗(η)}η.

Definition 9. Let f be a concrete function and f∗ its corresponding abstract function. Their exists at least
one naming, ρ, such that Nf∗(ρ) is equal to the maximum element of the set {Nf∗(η)}η. This maximum is the
modulo-structure representation of f , and the symbol Nf∗ = Nf∗(ρ) is used.

Let f∗ and g∗ abstract functions such that Nf∗(η) = Ng∗(µ), for some naming functions η of f∗ and µ of g∗.
Then f∗ = g∗, and η, µ are equivalent naming functions for f∗. The sets of representations for f∗, g∗ are disjoint
if f∗, g∗ are different functions; f∗ ̸= g∗ implies {Nf∗(η)}η ∩ {Ng∗(µ)}µ = ∅. This is a good representation of
abstract functions as natural numbers, because {Nf∗(η)}η is a natural number and two functions are assigned
different numbers if and only if they have different structure. A linear order for finite functions has been defined.
The representation of a function is a large natural number because #{Nf∗(η)}η = (#(Dom(f∗) ∪ Im(f∗)))!. If

27

f∗ is a permutation of k objects, the representation of f∗ is the sum of k! many powers of 2. The representation
of a permutation of 10 objects would be a natural number somewhere close to 1010

230

. This representation can be
made smaller, and the order of the functions will be invariant. In Definition 9, the fact that sets of representations
are disjoint for different functions, is used. The function f is assigned the maximum of the representations, for
the following reason. Let A ∩ B = ∅, then the order relation of the maximum elements, max(A) < max(B),
determines the order relation A < B. Assigning to f the set of representations {Nf∗(η)}η, or the maximum
element, Nf∗ = max{Nf∗(η)}η, defines the same order on the set of finite functions.

A definition for equivalent objects of a finite function f : A → B can also be defined. Let ρ1, ρ2 : (A ∪B) →
{0, 1, 2, . . . , n − 1} two canonical naming functions so that Nf∗ = Nf∗(ρ1) = Nf∗(ρ2), where n = #(A ∪ B).
Suppose the naming functions are not equal, so that ρ1(x) ̸= ρ2(x), for some x ∈ A ∪ B. Naming functions are
bijections, so there exists y ̸= x such that ρ1(y) = ρ2(x). Then x, y are equivalent objects because there are two
distinct canonical naming functions ρ1, ρ2 that assign the same numerical value to x, y.

Definition 10. Let f : A → B a finite function. Two distinct objects x, y ∈ A ∪ B are equivalent if there exist
canonical naming functions ρ1, ρ2 such that ρ1(x) = ρ2(y). This gives an equivalence relation on the set of objects
A ∪B.

This method provides two things. The set of all finite functions can be ordered (modulo structure), and a
canonical naming function on the objectsDom(f)∪Im(f) is also obtained. The set of abstract finite permutations
can be ordered. Also the elements of any abstract finite permutation can be ordered, and it is easy to know which
objects of f are equivalent. Most importantly these orders are well behaved in several ways. Here the focus is
on ordering finite permutations, and a general exposition of finite functions is left for future work. Nonetheless,
some examples of general functions are given below. The representation of the first finite functions will be found,
to get an intuitive grasp of this order.

The first example is of course the trivial function f0 that sends a → a. This function depends of a single
object so use the set {0} to name the set of objects {a}. Recalling the definition of ordered pair, the ordered
pair 0 → 0 is represented by the number 6 = 21 +22. The odd number is used to represent the preimage and the
even number to represent the image; a 0 in the preimage means 1 is an element of the ordered pair and a 0 in
the image means 2 is an element of the ordered pair. The function consists of one component. Its only element
is 6, so Nf0 = 22

1+22 . To construct all finite functions in order of their representation, the next logical choice
is a function f1 defined by one component, f1(a) = b. In this case, there are two objects so a naming of this

function is a bijection {a, b} → {0, 1}. Choosing the naming a = 0 and b = 1 gives the representation 22
1+24 .

With the naming a = 1 and b = 0 the representation is 22
3+22 . It is concluded that the canonical representation

of f1 is the number Nf1 = 22
1+24 corresponding to the first naming function a = 0 and b = 1 because that is the

maximum of the representations. These are the only two possible abstract functions of one component; namely
f0(0) = 0 (trivial function) and f1(0) = 1 (one object sent to a different object).

Finite functions are ordered isomorphic to N; every finite function is assigned a unique natural number.
There is a set of natural numbers {Nf}f :finite function representing finite functions; every finite function f is
represented by a unique set number Nf . Being a set of natural numbers, the set {Nf}f :finite function can be
ordered N0 < N1 < N2 < Every finite function f is assigned an index; Nf = Nk for some index k. The first
few functions N0 < N1 < N2 < . . . will be found as examples. The first two functions are the one component
functions N0 = 22

1+22 and N1 = 22
1+24 from above. Now consider functions of two components. To find the

next function, f2 = N2, add a component. But, intuitively, our order will also assign a larger representation to a
function with more objects, holding fixed the number of components. Consider finite functions of two components,
and two objects. There is a total of 3 functions that satisfy this conditions and they are the functions N2, N3, N4.
The function N2 is given by two components that switch the objects in the domain, f2(a) = b and f2(b) = a.
This means the two objects of the function f2 are equivalent. The naming a = 0, b = 1 or the naming a = 1, b = 0
give the same representation N2 = 22

1+24 + 22
3+22 . The next function in order is the identity function on

two objects, f3(a) = a and f3(b) = b. Again, both objects are equivalent and they give the representation

N3 = 22
1+22 + 22

3+24 . The function N4 is the trivial function that sends two objects to one of the two; the
components are f4(a) = a and f4(b) = a. The canonical representation N4 = 22

1+24 + 22
3+24 is given by the

naming a = 1 and b = 0. The first summand represents f4(0) = 1 and the second summand represents f4(1) = 1.
It is easy to verify the alternative naming function gives a smaller representation. The naming a = 0 and b = 1,
gives the representation 22

1+22 +22
3+22 , of f4. Notice that the function that seems to cause more movement, f2,

is represented by the smallest number of the three. The function that sends everything to a is the largest of the

28

three, and the identity is the middle number. This observation will be important in the special case of ordering
permutations.

Now consider functions of two components and three objects, the next functions in the order, N5, N6, N7.
Each function is given with its canonical naming, and some of the other non canonical representations.

f5(a) = b, f5(b) = c has canonical naming a = 1, b = 2, c = 0 giving ordered pairs (1, 2), (2, 0) with
representation

N5 = 22
3+26 + 22

5+22 .

Other, non canonical, representations are a = 0, b = 1, c = 2 with representation 22
1+24 + 22

3+26 ; a = 0,
b = 2, c = 1 with representation 22

1+26 + 22
5+24 ; a = 1, b = 0, c = 2 with representation 22

3+22 + 22
1+26 ; a = 2,

b = 1, c = 0 with representation 22
5+24 + 22

3+22 ; a = 2, b = 0, c = 1 with representation 22
5+22 + 22

1+24 , etc.
f6(a) = c, f6(b) = c has canonical naming a = 0, b = 1, c = 2 giving the ordered pairs (0, 2), (1, 2) with

representation

N6 = 22
1+26 + 22

3+26 .

The naming a = 1, b = 0, c = 2 is also canonical; a, b are equivalent objects of f . Other, non canonical,
representations are a = 2, b = 1, c = 0 with representation 22

5+22+22
3+22 ; a = 2, b = 0, c = 1 with representation

22
5+24 + 22

1+24 . etc.
f7(a) = a, f7(b) = c has canonical naming a = 2, b = 0, c = 1 giving the ordered pairs (2, 2), (0, 1) with

representation

N7 = 22
1+24 + 22

5+26 .

Other, non canonical, naming functions are a = 2, b = 1, c = 0 with representation 22
3+22 + 22

5+26 ; a = 0,
b = 1, c = 2 with representation 22

1+22 + 22
3+26 ; a = 0, b = 2, c = 1 with representation 22

1+22 + 22
5+24 ; etc.

So far, the first eight numbers N0, N1, . . . , N7 have been found. To find the next numbers representing
functions, in order, one must be careful. There is one function of two components and four objects. However, it
is not next in order, because the functions of three components and three objects have smaller representation.
Notice that the order of functions is determined first in terms of objects. Let f : A → B and g : C → D finite
functions and suppose #(A ∪ B) < #(C ∪ D), then f < g. If #(A ∪ B) = #(C ∪ D), check the number of
components. The function with more components has larger representation; #(f) < #(g) implies f < g. Let
Am

n a finite function of n objects and m components. The following inequalities hold.

A1
1 < A1

2 < A2
2 < A2

3 < A3
3 < A2

4 < A3
4 < A4

4 < A3
5 < A4

5 < A5
5 < A3

6 < A4
6 < A5

6 < A6
6 < · · ·

This simply means that apart from being well defined, the order given to finite functions is well behaved in
the sense just described. The table below states the number of functions with n objects and m components.
There is one function of one object and one component (a → a). There is one function of two objects and one
component (a → b). There are three functions of two objects and two components. Three functions of three
objects and two components, have also been found. This is shown in Table 2.

Suppose f, g have the same number of objects #O(f) = #O(g), and the same number of components
#C(f) = #C(g). Their canonical representations Nf , Ng ∈ N must be found, and the order relation Nf < Ng

of the representations determines the order relation f < g of the functions. Therefore, to compare two finite
functions, it is sufficient to compute their canonical representations and compare these numbers. To find the index
k such that Nk = Nf , is slightly more complicated. It is so far known how to find the canonical representation
Nf of f . But, to know its position in the order more information than just its canonical representation is needed.
The total number of functions there are of less objects, and the total number of functions that have the same
number of objects but less components. Then, the canonical representation of all functions with the same number
of objects and same number of components has to be found. In the table above, there are seven functions of
three components and three objects. These seven functions are listed below. For simplicity of exposition, arrows
are used to represent the components of a function. For example, the function defined by the three components
f(a) = f(b) = f(c) = a is the set of arrows of the last column. These are shown in Table 3.

Any function of three components and three objects is equivalent to one of these seven. These functions
are next in the canonical ordering of finite functions; they are represented by the numbers N8, N9, . . . , N14.

29

Functions Objects Components

1 1 1
1 2 1
3 2 2
3 3 2
7 3 3
1 4 2
9 4 3

4 4
3 5 3

5 4
5 5

1 6 3
6 4
6 5
6 6

...
...

...

Table 2: The first column indicates how many distinct functions of n objects and m components. There is no
general way of calculating the number of functions, except to find all possible functions and to determine which
ones are equivalent.

N8 N9 N10 N11 N12 N13 N14

a → b a → b a → a a → a a → a a → a a → a
b → c b → a b → c b → b b → a b → a b → a
c → a c → a c → b c → c c → c c → b c → a

Table 3: There is a total of seven functions of three objects and three components.

To know which of these seven functions is N8, find the canonical representation of all seven and the one with
smallest canonical representation is the function N8, then the function N9 is the function with second smallest
representation, etc. Of these seven functions, the one with largest representation is the function N14. Here they
are given in order from smallest to largest (left to right). It is left as an exercise for the reader, to verify the
canonical representations of these functions.

N8 = 22
1+24 + 22

3+26 + 22
5+22

N9 = 22
1+26 + 22

3+26 + 22
5+24

N10 = 22
1+24 + 22

3+22 + 22
5+26

N11 = 22
1+22 + 22

3+24 + 22
5+26

N12 = 22
1+22 + 22

3+26 + 22
5+26

N13 = 22
1+24 + 22

3+26 + 22
5+26

N14 = 22
1+26 + 22

3+26 + 22
5+26

To find the canonical representation of N8, observe the objects are all equivalent. Let a = 2, then make
b = 0 and c = 1, to maximize the term where a is image. The naming functions b = 2, a = 1, c = 0 and
c = 2, b = 1, a = 0 also give the canonical representation. The canonical naming function of N9 is also easy to
find. Start by naming a = 2, since a is the most frequent object. Then make b = 1 because b is the object
that has more relations with a. In N10 make a = 2 because a is a fixed point; this ensures the term 25 + 26 is
in the function and maximizes the value. The objects b, c are equivalent in the function N10 because there are
two canonical naming functions a = 2, b = 1, c = 0 and a = 2, b = 0, c = 1. The rest of the canonical naming

30

functions are easily found.
Now consider the function of two components and four objects defined by f15(a) = c and f15(b) = d. The

objects in the image have priority for being assigned larger numbers, so start with naming c = 3 because c is in
the image. Now, things change between choosing a, b, d for the value 2. Instead of assigning 2 to d, which is also
in the image, use the object that is related to c = 3. That would be the object a = 2. Then, assign the values
d = 1 and b = 0. The components of the function are the ordered pairs (2, 3) and (0, 1) stating f15(2) = 3 and

f15(0) = 1. The set of these ordered pairs is the canonical representation N15 = 22
1+24 + 22

5+28 ; the summand

22
1+24 represents the pair (0, 1) and the second summand 22

5+28 represents the pair (2, 3). The naming function
d = 3, b = 2, c = 1, a = 0 gives components (0, 1) and (2, 3) so that this is also a canonical naming function.
Equivalent objects are those that can be assigned the same numerical value under different canonical naming
functions. Therefore, a, b are equivalent and c, d are equivalent.

Next in order are the functions of three components and four objects. Each of these nine functions is
represented by one of the numbers N16, N17, . . . , N24. Any function of three components and four objects is
equivalent to one of these nine. Table 4 provides these functions.

N16 N17 N18 N19 N20 N21 N22 N23 N24

a → c a → b a → b a → c a → d a → a a → a a → a a → a
b → a b → a b → d b → c b → d b → c b → d b → b b → a
c → d c → d c → d c → d c → d c → d c → d c → d c → d

Table 4: There is a total of nine functions of four objects and three components.

The smallest of these nine functions is N16 = 22
1+26 +22

5+28 +22
7+24 given by the canonical naming function

a = 2, b = 0, c = 3, d = 1. The next function is N17 = 22
1+24 + 22

5+28 + 22
7+26 with canonical naming function

a = 3, b = 2, c = 0, d = 1 and a, b are equivalent objects. The third is N18 = 22
1+26 + 22

3+28 + 22
5+28 under the

naming a = 0, b = 2, c = 1, d = 3. Next is the function N19 = 22
3+28 +22

5+28 +22
7+22 with the naming function

a = 2, b = 1, c = 3, d = 0 and a, b are equivalent objects. The function N20 = 22
1+28 + 22

3+28 + 22
5+28 has

naming a = 2, b = 1, c = 0, d = 3 and a, b, c are equivalent objects. The function N21 = 22
3+26 +22

5+22 +22
7+28

is given by a = 3, b = 1, c = 2, d = 0. The next function is N22 = 22
1+26 + 22

3+26 + 22
7+28 with a = 3, b = 1,

c = 0, d = 2 and b, c equivalent. The second largest is N23 = 22
1+24 + 22

5+26 + 22
7+28 with naming a = 3, b = 2,

c = 0, d = 1 and a, b equivalent. The largest function is N24 = 22
1+24 + 22

5+28 + 22
7+28 with a = 3, b = 2,

c = 0, d = 1. By now it can be appreciated that it is not trivial to find the canonical naming function of a finite
function, in the general case. Careful observations have to be made to calculate the canonical naming functions,
without having to find all possible representations. There are two main problems to solve in the general case, and
these computational strategies will be treated in future work. 1) Finding the canonical naming function of any
finite function, and 2) Finding the total number of distinct abstract functions of n objects and m components.
In the next section, the suborder of finite permutations will be discussed and it proves much easier to work with.

The next functions in the order of all finite functions are functions of four objects and four components. The
general analysis is left for future work, because finding all the possible distinct functions of four objects and four
components is laborious. The functions that come after those are functions of three components and five objects.
There is a total of three such functions.

a → a a → b a → d

b → d b → d b → d

c → p c → p c → p

There is one function of three components and six objects.

a → d

b → p

c → q

31

The representation of f∗, in example (10) is a set of five natural numbers. The canonical naming will have to
assign η(a) = 5. This guarantees 211 + 212 ∈ Nf∗(ρ) represents f∗(a) = a. No object has a relation with a. Any
of the remaining objects b, c, d, p, q can still be assigned the value 4. If ρ(c) = 4 the representation is maximized
because two components have power 210; namely, the components f∗(b) = c and f∗(d) = c. Choose ρ(b) = 3
instead of ρ(d) = 3 because b is related to c by two components. This leaves us with ρ(d) = 2. Now assign q = 1
and p = 0. The canonical representation of

f∗(a) = a

f∗(b) = c

f∗(c) = b

f∗(d) = c

f∗(p) = q

under the canonical naming ρ is

Nf∗ = 22
1+24 + 22

5+210 + 22
7+210 + 22

9+28 + 22
11+212

and there are no equivalent objects.

3.4 Finite Permutations

The suborder of permutations is easier to find, in part because it is well behaved with respect to cardinality.
Let f a permutation on m objects and g a permutation on n > m objects, then Nf < Ng. Furthermore,
permutations are ordered by complexity. Given permutations f, g of the same size, they can be ordered and
the interpretation is that a larger number is a simpler permutation. The identity permutation of size n has
larger representation than all other permutations of size n. The one cycle permutation of n objects has the
smallest representation. The number of distinct abstract permutations of size n, is equal to the number of
additive partitions of n. The order of the first few permutations is given. The unique permutation P0, of size
1, is the function f0 of one component, represented by N0 = 26. There are two permutations of size 2, the
functions N2 and N3. There is a total of three permutations of size 3. These are the functions N8, N10, N11.
The smallest of these three numbers, N8, represents the one cycle permutation. The middle permutation, N10,
leaves one object fixed. The largest, N11, represents the identity permutation. Call these first six permutations
P0 = N0, P1 = N2, P2 = N3, P3 = N8, P4 = N10, P5 = N11. Let us order the five distinct permutations of size 4.
These are given in order in Table 5.

P6 P7 P8 P9 P10

a → b a → b a → a a → a a → a
b → c b → a b → c b → b b → b
c → d c → d c → d c → d c → c
d → a d → c d → b d → c d → d

Table 5: There is a total of five permutations of four objects.

If two objects are in the same cycle, then they are equivalent. The converse is not true. For example, all
objects of P10 are equivalent but they are all in different cycles. Function P6 has canonical naming function
a = 3, b = 1, c = 0, d = 2. To find its naming function, observe that all the objects are equivalent. Choose a = 3,
without loss of generality. Next, the term where a is in the image has to be maximized. To this end, define
d = 2. Then, to maximize the term where a is in the preimage, make b = 1. This implies c = 0. In permutation
P7 there are two pairs of equivalent objects a, b and c, d, and a canonical naming function is a = 3, b = 2, c = 1,
d = 0. Permutation P8 has canonical naming a = 3, b = 2, c = 0, d = 1, and objects b, c, d are equivalent. The
canonical naming function of permutation P9 is a = 3, b = 2, c = 1, d = 0, and objects c, d are equivalent. Any
naming function of P10 is canonical; all objects are equivalent. The fact that all objects are equivalent does not
imply every naming is a canonical naming. An example of this is P6.

32

P6 = 22
1+26 + 22

3+22 + 22
5+28 + 22

7+24

P7 = 22
1+24 + 22

3+22 + 22
5+28 + 22

7+26

P8 = 22
1+24 + 22

3+26 + 22
5+22 + 22

7+28

P9 = 22
1+24 + 22

3+22 + 22
5+26 + 22

7+28

P10 = 22
1+22 + 22

3+24 + 22
5+26 + 22

7+28

To find the maximum Nf (ρ) = maxη{Nf (η)}, over all possible naming η, find the canonical naming providing
the largest representation. To maximize the set number {{a, f(a)}, {b, f(b)}, {c, f(c)}, {d, f(d)}}. The number
27 + 28 ∈ f is a component of the canonical naming function if f(x) = x for some x ∈ {a, b, c, d}. If there are
no fixed points, look for cycles of two objects, and continue looking for the smallest possible cycle, to assign the
largest values of the naming. The largest possible set number that can represent an abstract permutation of four
elements is 22

1+22 + 22
3+24 + 22

5+26 + 22
7+28 , representing the identity permutation (0)(1)(2)(3). The number

Nf measures and compares how much movement a permutation causes. If f and g are permutations of the same
number of objects and f has less fixed objects than g, then Nf < Ng. The more complicated a permutation
becomes the smaller its representation becomes (holding fixed the permutated set). Intuitively, assigning larger
values to objects in smaller cycles helps to maximize the representation.

One more example of permutations will be given before applying the same method to define groups. Let f
be the permutation (a)(b, c)(p, q, r) on the set of abstract objects {a, b, c, d, p, q, r}. A canonical ordering of its
elements, and the canonical representation Nf will be found. It should result in a = 5, b = 4, c = 3, p = 2, q = 0,
r = 1, or one of its equivalent numbering functions, and

Nf = 22
1+24 + 22

3+26 + 22
5+22 + 22

7+210 + 22
9+28 + 22

11+212 .

In all the equivalent numbering functions, a = 0. An alternative is b = 3 and c = 4. The values of the objects
in the 3-cycle can also be changed. Make q = 2, then p = 1 and r = 0. If r = 2, then q = 1 and p = 0.

4 Finite Groups

Using the results from the previous sections, finite groups can be represented with natural numbers. A finite group
G(∗) is a bijection that assigns permutations, of the set G, to objects of G. Operation functions are the elements
in the image of ∗ : G → Aut(G). Consider a naming η of the set G. Then the objects of G, and the operation
functions of G are set numbers. Thus, ∗ is a function of the form M → N , where max(M) < min(N). If the group
has k elements, the domain M = Dom(∗) is the set number {0, 1, 2, . . . , k − 1}. The image N = Im(∗) is the
set number {N∗0(η), N∗1(η), N∗2(η), . . . , N∗(k−1)(η)}, where the operation functions N∗x are concrete functions.
The operation function ∗x is represented by a natural number N∗x(η), given a naming function η. The definition
of group satisfies the definition of function. Every finite group is a set number whose elements are ordered pairs.
The ordered pairs are sets of two objects; one odd and one even. The first components are odd numbers 2i+1, for
every i ∈ {0, 1, 2, . . . , k−1}. The second components are even numbers representing permutations, 2(N∗x(η)+1).
Every naming function η defines a natural number NG(η), that depends on the group and the naming function
of that group. There is a finite number of these representations. The maximum representation is the canonical
representation NG = max{NG(η)}η of the group G. This canonical representation gives us a canonical ordering
of the elements of G, as well. It behaves much like the representations of permutations. The largest value is
assigned to the identity element, e = k − 1, in any canonical naming function. A group is a set number of the
form

22
2(k−1)+1+2

2

(
2(2

1+22)+2(2
3+24)+···+2(2

2k−1+22(k−1+1))+1

)
+ 22

2(k−2)+1+2
2

(
2(2

1+2a)+2(2
3+2b)+···+2(2

2k−1+22(k−2+1))+1

)
+

+22
2(k−3)+1+2

2

(
2(2

1+2c)+2(2
3+2d)+···+2(2

2k−1+22(k−3+1))+1

)
+ 22

2(k−4)+1+2
2

(
2(2

1+2x)+2(2
3+2y)+···+2(2

2k−1+22(k−4+1))+1

)
+

. . .+ 22
2(0)+1+2

2

(
2(2

1+2z)+2(2
3+2w)+···+2(2

2k−1+22(0+1))+1

)
,

where the k− 1 numbers a, b, . . . are distinct elements of {2, 4, 6, . . . , 2k− 6, 2k− 4, 2k}, the numbers c, d, . . . are
distinct elements of {2, 4, 6, . . . , 2k− 6, 2k− 2, 2k}, the numbers x, y, . . . are distinct elements of {2, 4, 6, . . . , 2k−

33

8, 2k − 4, 2k − 2, 2k}, etc. The numbers z, w, . . . are distinct elements of {4, 6, . . . , 2k}. Also, the numbers
a, c, x, z, . . . are all pairwise different and distinct from 2. All the b, d, y, w, . . . are pairwise different and distinct

from 4, etc. The first term, 22
2(k−1)+1+2

2

(
2(2

1+22)+2(2
3+24)+···+2(2

2k−1+22(k−1+1))+1

)
, indicates that e = k − 1 is

assigned to the identity function. Not all natural numbers of this form are groups. It is additionally required
that the associative property holds. Later in this section it will be seen that verifying the associative property is a
straightforward process. The composition of functions will be analyzed numerically. With abstract permutations
there was a canonical representation, given by a canonical naming of the objects. Here a similar situation arises,
now in the context of groups.

Theorem 7. Let G a finite group of order k, then a naming function ρ : G → {0, 1, 2, . . . , k − 1} exists and a
corresponding canonical representation NG = max

η
NG(η) = NG(ρ). The bijection ρ is the canonical ordering of

G, and ρ(e) = k− 1. Two distinct group objects x, y are equivalent if their exists two distinct canonical orderings
ρ1, ρ2 such that ρ1(x) = ρ2(y).

This gives a well defined linear order on the set of finite groups. Two groups have the same canonical
representation if and only if they are isomorphic. This linear order is well behaved with respect to cardinality;
|G| < |H| if and only if NG < NH .

The order of a group element, |g|, is the smallest power n such that gn = e. The identity element is assigned
to k − 1, to maximize the representation. Then identify the objects of smallest order, in G; this number is the
smallest prime number that divides |G|. The number k − 2 will be assigned to one of these objects. The first
groups are constructed to illustrate the procedure of finding canonical representation of a group. Start with the
trivial group of one object. The group G0 is determined by the relation ∗a(a) = a. The trivial naming a = 0

is given to it and the operation function N∗0 is the one component function P0 = N0 = 22
1+22 . Although the

numeric value of a group G is used with the notation NG, a finite group can also be represented with Gk for a
natural index k because all finite groups will be generated in a linear order. The first group is the trivial group.
The canonical representation is

G0 = 22
2(0)+1+2

2

(
22

1+22+1

)
= 22

1+2
2(26+1)

.

Before continuing on to more groups, the use of a table notation is explained, to represent a set of permutations.
The same notation of a column of arrows to represent a single permutation is used, but the arrows are not written.
For example, the permutation (a, b)(c)(d) can be written as

a b
b a
c c
d d

To represent several permutations of the same size, a single rectangular grid is required. For this, one column is
used as a pivot for the rest. For example, the set of permutations {(a, b)(c)(d), (a, b, c, d), (a)(c, b)(d), (a)(b)(c)(d)}
can be written as a single rectangular grid of 4 + 1 columns. The first (left-most) column serves as pivot by
which all other columns are defined. The second column represents the permutation (a, b)(c)(d), the third column
represents the permutation (a, b, c, d), the fourth column is (a)(b, c)(d) and the fifth column is (a)(b)(c)(d).

a b b a a
b a c c b
c c d b c
d d a d d

In the particular case of groups, the table is square and rows and columns do not repeat objects. Additionally,
one column must be equal to the identity permutation, so the following convention is adopted. The left-most
column will represent the identity permutation. The identity object will be in the upper left hand corner. The
second column is representing the operation function of the second object in the first column. The third column
represents the operation function of the third object in the first column. In general, if a is the k − th object in
the first column, then the operation function ∗a is represented in the k − th column of the table. Therefore, an

34

operation is written in the usual table form, so that the following table has products such as e ∗ e = e, a ∗ e = a,
b ∗ b = e, a ∗ c = e, and the like.

e a b c
a b c e
b c e a
c e a b

This simply means that given any fixed position, the object in that position is expressed in terms of the
operation between the first objects of that column and row. This form of writing the operation functions
coincides with the multiplication table of the group. If x is the k − th object in the first row, then the k − th
column gives the corresponding operation function ∗x. In the process of finding the canonical representation of
a group, the associative property will have to be verified frequently. This is given by a simple rule on the group
table. Let x be any object in a group G of order n. The element x appears in the table exactly n times; once
in each column/row. Each one of the positions where x appears, is an expression for x in terms of two objects;
a factorization x = y ∗ z. Given a table representing a set of operation functions, the operation satisfies the
associative property if and only if ∗x = ∗y ◦ ∗z, for every factorization x = y ∗ z of every x ∈ G. In the table
example above, b = a ∗ a so that ∗b = ∗a ◦ ∗a has to be verified. To verify this is true, prove ∗b(g) = (∗a ◦ ∗a)(g)
for every g ∈ G. To find b ∗ c = ∗b(c), the arrows c →∗a e →∗a a are used. Also, b ∗ a = ∗b(a) given by the
arrows a →∗a b →∗a c. For another example, take the product e = c ∗ a. It must be proven ∗c ◦ ∗a is the identity
function. First find (∗c ◦ ∗a)(b), which is given by the arrows b →∗a c →∗c b. Also, (∗c ◦ ∗a)(a) is given by
a →∗a b →∗c a, etc. The construction of groups can be continued having in mind the above rules. A group of
two objects will have a table of the form

e g1
g1

Of course g1 has an inverse ̸= e, so that g1 ∗ g1 = e

e g1
g1 e

The canonical naming function is trivial to find. To maximize the representation, make e = 1, g1 = 0. The
group has numeric table

1 0
0 1

The group is an operation. This operation is a concrete function of two components. The first component
is ∗(e) = id, that sends e = 1 to the identity function (0)(1). The second component of the operation is
∗(g1) = (0, 1), that sends the object 0 = g1 to the permutation (0, 1). The canonical representation has two

terms. The first term representing the first component is 22
2(1)+1+2

2

(
22

3+24+22
1+22+1

)
. The second component is

given by the expression 22
2(0)+1+2

2

(
22

3+22+22
1+24+1

)
. The canonical representation, NZ2 , of the group Z2 is

G1 = 22
2(1)+1+2

2

(
22

3+24+22
1+22+1

)
+ 22

2(0)+1+2
2

(
22

3+22+22
1+24+1

)

= 22
3+2

2(26+224+1)
+ 22+2

2(218+212+1)
.

Why is (11) the canonical representation? The canonical representation is the maximum of the representations.
In this case there are two possible representations, one for each naming function. The naming defined by e = 0
and g1 = 1, has the representation

22
2(0)+1+2

2

(
22

3+24+22
1+22+1

)
+ 22

2(1)+1+2
2

(
22

3+22+22
1+24+1

)

because now 0 is assigned to the identity function, while 1 is assigned the permutation (0, 1). This representation
is smaller than the canonical representation above. The reader should understand why this is true, before moving

35

on to the next examples. Remember, the largest number of the naming will be assigned to the identity object
because this maximizes the representation. Naming the rest of the objects, to obtain the canonical representation,
will be described below.

To make a distinction, a term is a number representing a component x →∗ ∗x of the operation. The upper
terms are the numbers representing components of the operation functions; they are called sub terms. For

example, 22
3+22 is a sub term of the term 22

2(0)+1+2
2

(
22

3+22+22
1+24+1

)
. Terms are ordered pairs; they are elements

of the set
⋃

i(i,), defined at the beginning of section 4.1. Notice in the second equality, that sub terms are also

ordered pairs. For example, the sub term 22
3+22 and the term 23 + 22(2

6+224+1) are both numbers of the form
22m+1 + 22(n+1). They are both concrete arrows.

4.1 |G| = 3

Next are groups of three objects. Start with the table

e g1 g2
g1
g2

All objects of G have to satisfy |g| 3, so that |g| = 3 for all g ∈ G. This means g21 ̸= e. Since g1 is not the
identity element, g21 ̸= g1. Therefore g21 is a new object g2, and g1 ∗ g2 = g31 = e.

e g1 g2
g1 g2
g2 e

Use the associative rule to find the column of g2. It is true that g2 = g21 , so that ∗g2 is the function ∗g1 ◦ ∗g1.
To find ∗g2(g1), follow the arrows g1 →∗g1 g2 →∗g1 e so that g2 ∗ g1 = e. In the same way g2 →∗g1 e →∗g1 g1, so
that g22 = g1.

e g1 g2
g1 g2 e
g2 e g1

This is the group Z3. To find the canonical naming function, start with e = 2. One of the non trivial objects
g1, g2 will have to be assigned the value 1 and the other will be assigned the value 0. Next it is necessary to
know which of the two objects will be assigned the value 1 and which will be assigned the value 0. There are two
different canonical naming functions. These are ρ1 : e = 2, g1 = 1, g2 = 0, and ρ2 : e = 2, g1 = 0, g2 = 1. Either
of these naming functions will give the numerical table

2 1 0
1 0 2
0 2 1

(11)

The canonical representation of the group is a concrete function of three components. Use either of the two
canonical naming functions to find it. The first component is the ordered pair that assigns 2 to the identity
permutation (0)(1)(2) because e = 2 is the identity object. This ordered pair is represented by the number

22
2(2)+1+2

2

(
22

5+26+22
3+24+22

1+22+1

)
.

The second component assigns g1 = 1 to the concrete permutation (2, 1, 0) because this is the permutation
represented by the column of 1, in (11). This component is given by

22
2(1)+1+2

2

(
22

5+24+22
3+22+22

1+26+1

)
.

The object g2 = 0 is assigned the permutation (2, 0, 1) because this is the permutation given by the column
of 0, in table (11). The third term is the number

36

22
2(0)+1+2

2

(
22

5+22+22
3+26+22

1+24+1

)
.

The canonical representation is the number

22
2(2)+1+2

2

(
22

5+26+22
3+24+22

1+22+1

)
+ 22

2(1)+1+2
2

(
22

5+24+22
3+22+22

1+26+1

)
+ 22

2(0)+1+2
2

(
22

5+22+22
3+26+22

1+24+1

)

= 22
5+2

2(26+224+296+1)
+ 22

3+2
2(266+212+248+1)

+ 22
1+2

2(218+272+236+1)

4.2 |G| = 4

Before moving on to finding groups of four objects, one more thing is brought to attention. Given a finite group
G, the list of all the operations a ∗ b is a system of equations that defines the group. The procedure used here
for finding groups, will provide a minimal set of independent equations that determine each group. The group
Z2 is determined by the expression a2 = e (trivial expressions, e2 = e and e ∗ x = x ∗ e = x do not have to be
written down). So, Z2 is a group determined by one equation. The group Z3 is given by the expressions a2 = b
and a3 = e. From these two equations, the complete list of operations of the group can be derived.

Klein 4-Group. Start with a set {e, g1, g2, g3}. There is at least one object with order equal to the smallest
prime divisor of 4; suppose g21 = e, without loss of generality.

e g1 g2 g3
g1 e g3 g2
g2 g3
g3 g2

(12)

There are two possibilities g22 = e or g22 = g1. Suppose the first case is true. Then the Klein four-group, K(4),
is determined. Any group of of four elements e, g1, g2, g3 such that e = g21 = g22 , is isomorphic to K(4).

e g1 g2 g3
g1 e g3 g2
g2 g3 e g1
g3 g2 g1 e

To find the canonical naming functions start with e = 3. there are three remaining objects g1, g2, g3. To
find their values start with the list of objects in table form. All the non trivial objects are second order objects
whoever 2, 1, 0 may be.

3 2 1 0
2 3
1 3
0 3

Already, this determines the group.
3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

This means that any naming function with e = 3 is a canonical naming function. The objects g1, g2, g3 are
all equivalent, so that K(4) has a total of six canonical naming functions. The object 2 can be chosen from
three possible options. The object 1 can be chosen from the remaining two objects and 0 is determined as the
remaining object. A naming function will be represented by a sequence. For example, the naming function e = 3,
g1 = 2, g2 = 1, g3 = 0 is written as η(e, g1, g2, g3). The six naming functions are

η(e, g1, g2, g3) η(e, g2, g1, g3) η(e, g3, g1, g2)
η(e, g1, g3, g2) η(e, g2, g3, g1) η(e, g3, g2, g1)

37

Any naming function with e = 3, gives the numeric table

3 2 1 0
2 3 0 1
1 0 3 2
0 1 2 3

and canonical representation

NK(4) = 22
7+2

2

(
2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)
+ 22

5+2
2

(
2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
3+2

2

(
2(2

7+24)+2(2
5+22)+2(2

3+28)+2(2
1+26)+1

)
+ 22

1+2
2

(
2(2

7+22)+2(2
5+24)+2(2

3+26)+2(2
1+28)+1

)
.

The first term is the component that sends 3 to the identity function (0)(1)(2)(3), while the second term is the
component that sends 2 to the permutation (0, 1)(2, 3), etc. The group K(4) has a total of six automorphisms,
and there are a total of six distinct canonical naming functions. This in not coincidental. Each of these six
naming functions determines an automorphism of K(4). Hold one of these fixed as pivot. For example, take the
pivot A = η(e, g3, g1, g2) which will be held fixed. Choose a second canonical naming function B = η(e, g1, g3, g2).
The function that sends the first component of A to the first component of B, and the second component of A
to the second component of B, etc. is called a component function. The component function ϕ : A → B is an
automorphism, for every canonical naming function B. That is to say, ϕ that acts by e 7→ e, g1 7→ g3, g2 7→ g2,
g3 7→ g1 is an automorphism of K(4). Choosing B = A then the identity automorphism is being described. Let
each of the of the canonical naming functions defines an automorphism. The initial choice of A is inconsequential;
any choice for A gives the same set of functions.

Cyclic group Z4. Going back to table (12), consider the second case, g22 = g1. This determines the table

e g1 g2 g3
g1 e g3 g2
g2 g3 g1 e
g3 g2 e g1

This is the cyclic group Z4, determined by the equations g21 = e and g22 = g1. To find the canonical
representation, be careful to assign values. It is not known which object of Z4 takes each value of 0, 1, 2. If the
value 2 is assigned to g2, g3, the numeric table

3 2 1 0
2 1
1
0

On the other hand, if 2 is assigned to the second order object, g1, the table is

3 2 1 0
2 3
1
0

The latter maximizes the representation. Intuitively, try to assign the larger numbers by giving priority to
the left-most columns. Within a column give priority to the objects of upper rows. Place larger numbers further
to the left and then further to the top of the table. The rest of the table is determined.

3 2 1 0
2 3 0 1
1 0 2 3
0 1 3 2

38

Any naming function with e = 3, g1 = 2 is a canonical naming function. One canonical naming function

is e = 3, g1 = 2, g2 = 1, g3 = 0 which is written as η(e, g1, g2, g3). The other canonical naming function is

η(e, g1, g3, g2). This implies g2, g3 are equivalent objects. There are two automorphisms. Fix A = η(e, g1, g3, g2)

then B = η(e, g1, g2, g3). This determines the automorphism with components e 7→ e, g1 7→ g1, g2 7→ g3, g3 7→ g2.

If B = A the identity automorphism is determined. The canonical representation is

NZ4 = 22
7+2

2

(
2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)
+ 22

5+2
2

(
2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
3+2

2

(
2(2

7+24)+2(2
5+22)+2(2

3+26)+2(2
1+28)+1

)
+ 22

1+2
2

(
2(2

7+22)+2(2
5+24)+2(2

3+28)+2(2
1+26)+1

)
.

The groups K(4) and Z4 are compared in terms of the order of natural numbers. The odd number of the
terms do not determine the order because the even numbers, representing the operation functions, are larger
than the odd numbers. The group with the largest operation function, that is not in both groups, is the larger
of the two. The group K(4) has larger numeric representation than Z4 because K(4) has the largest operation
function that is not in both groups. The cyclic group has the smallest representation, NZ4

< NK(4), just as the
one cycle permutation (a, b, c, d) has smaller representation than (a, b)(c, d). Try to find all groups with less than
ten objects. The minimum independent set of equations, the canonical naming functions of its elements, the set
of automorphisms, the canonical table and canonical numeric representation are given in the second appendix.

5 Infinite Sets and Real Numbers

In this section, the structure of real numbers is built using the same principles of the construction of natural
numbers. The methods are simply extended to the case of infinite sets. First of all, notice that any real number in
the unit interval (0, 1] can be given in negative powers of 2. For example, the number 1

2 = 2−1 and 3
4 = 2−1+2−2.

A second observation is made. Consider the energy level graph of a sum, as in Figure 1. Notice that a vertical
displacement of the configuration of points, gives another true statement. What happens if a displacement is
made into negative integers? The statement still holds true. See Figure 3. This is true because negative powers
of two are still operated with the same rule. The expression 2n + 2n = 2n+1 holds for any integer n, not only
positive integers. For example, to add the numbers 1

2 + 3
4 , the equality is 2−1 + 2−1 + 2−2 = 20 + 2−2 = 1 + 1

4 .
This is used in formalizing real numbers.

Natural numbers are represented as hereditarily finite sets, and N = HFS. The subset axiom implies that
any sub collection of N, is a set. In particular, infinite sub collections of N are sets. In this section it will be
proven that these sets are the real numbers. The section is divided in three main parts.

1. Continuum [0, 1]. Every real number in the unit interval (0, 1] can be uniquely expressed as sum of
infinitely many negative powers of 2. Moreover, every infinite set of natural numbers defines a unique real
number in the unit interval. Supremum and addition properties are simple to prove.

Figure 3: The energy level interpretation can be taken to negative levels. Particles occupying these levels represent
negative powers of 2. In Figure 1 this represented 15 + 23 = 38. Here, the statement is 1.875 + 2.875 = 4.75.

39

2. Real Numbers. The constructions of N and [0, 1] are generalized to represent positive real numbers as
infinite subsets of Z. Then, the set of infinite subsets of N is given the structure of R with order and
operation properties.

3. Limits and Continuity. The concept of limit and continuity has a simple description in terms of these
constructions. An initial description of Analysis, in terms of N<, is provided.

5.1 Continuum [0, 1]

A real number x ∈ (0, 1] can be expressed as a sum of negative powers of 2, so that x =
∑
i∈X

2−i for some set

X ⊆ N. The set X is the set number corresponding to x. The set number X can be a finite set (for some rational

numbers). However, notice that a number 2−k can be seen as an infinite sum

(
∞∑

i=k+1

2−i

)
. Thus, every x ∈ (0, 1]

is represented by a unique infinite set of natural numbers. The symbol N1 = {1, 2, 3, . . .} is used for the set of
natural numbers greater than 0. A bijection Ninf → (0, 1], where Ninf is the set of all infinite subsets of N1,
will be given in this section. Infinite subsets of N are called infinite set numbers and they are ordered similarly
to finite set numbers, but with one difference. The smaller powers of 2 represent larger numbers. For example,
2−5 < 2−1. Instead of using the maximum of the set difference, now it is the minimum. Therefore, A < B if
and only if min(A△B) ∈ B. Notice that 1 ∈ R is the set number N1. Obviously, any two objects in Ninf are
comparable in terms of this order relation, <, because the symmetric difference is non empty for set numbers
A ̸= B. Then, min(A△B) exists because of the well order principle.

The order for the continuum has been defined in terms of the minimum of symmetric difference, and not in
terms of addition as was the case with the order of natural numbers. This is because addition is not yet defined
for infinite set numbers. It is trivial to verify the order is anti symmetric. The order is also transitive. Suppose
A < B and B < C. There is an object b1 ∈ B/A such that b1 < a for every a ∈ A/B. Also, there exists an
object c0 ∈ C/B such that c0 < b for every b ∈ B/C. Suppose there exists a2 ∈ A/C such that a2 < c for every
c ∈ C/A. Treat two cases and in each arrive at a contradiction, proving A < C.

1. Suppose a2 ∈ B. But it is also true that a2 /∈ C. Then c0 < a2. Therefore, c0 ∈ A. It is also true c0 /∈ B.
This implies b1 < c0, which in turn means b1 ∈ C. And, given that b1 /∈ A, it follows that a2 < b1. Use
transitivity in N to find contradiction.

2. Suppose a2 /∈ B. This implies b1 < a2. It is true that b1 /∈ A, so that b1 ∈ C implies a2 < b1 which is a
contradiction. It must be the case that b1 /∈ C. Then, c0 < b1. For c0 < a2 to be true, it must be true that
c0 ∈ A. But, this would imply b1 < c0, again a contradiction.

This proves the order on Ninf is transitive. The collection Ninf has been ordered isomorphic to (0, 1]. The
real number 1 is the set N1. To include the real number 0, in the order, consider N∗

inf = Ninf ∪ {∅}. This is the

Figure 4: The iterations for finding the supremeum of the family X = {A,B,C,D,E} is represented graphically.
The elements of X are set numbers in the unit interval. For example, A = 2−1 + 2−2 + 2−4 + 2−5 + 2−9 =
0.845703125.

40

collection whose objects are the infinite subsets of N, plus the empty set. The order of [0, 1] is given in terms
of sets, where 0 = ∅, every x ∈ (0, 1] is an infinite set of natural numbers and 1 = N1. The most important
aspect in the order of a continuum is the existence of a least upper bound of any subset, which is constructed
explicitly. Let X ⊆ Ninf ; every element of X is an infinite set of natural numbers. Define x1 = min(

⋃
X) and

Y1 = {A ∈ X|x1 ∈ A}. Let
xn+1 = min

(⋃
Yn − {xi}ni=1

)
,

where Yn = {A ∈ Yn−1|xn ∈ A}. The set number {xi}i ∈ Ninf is the supremum of X, by construction. This is
shown in Figure 4.

The next step, after defining the order for infinite set numbers, is to define their addition operation. Let
r = s−1; the inverse function of s. Recall, this function subtracts 1 one unit to the elements of the argument.
Given two infinite set numbers A = {a1, a2, . . .} and B = {b1, b2, . . .}, let An = {ak}nk=1 and Bn = {bk}nk=1 be
the sets of the first n objects. Define

An ⊕Bn = (An△Bn)⊕ r(An ∩Bn).

The addition A⊕B is the supremum of the finite sums,

A⊕B = sup
n

(An ⊕Bn).

5.2 Real Numbers

Based on the observation of Figure 3, the previous constructions of N and [0, 1] can be generalized, into the
structure of positive real numbers, R+

0 . But first, it must be proven that integers are sets. Take the integer
1 ∈ Z; it is the function ⊕1. A finite function is a finite set of set numbers. Then, the function ⊕1 is the
object {{1, 4}, {3, 6}, {5, 8}, {7, 10}, . . .}. Thus, the integer 1 ∈ Z is an infinite set number and, in particu-
lar, a set. The integer 2 ∈ Z is the infinite set {{1, 6}, {3, 8}, {5, 10}, {7, 12}, . . .} ∈ N∗

inf , etc. The negative
integer −1 ∈ Z is the object {{{3, 2}, {5, 4}, {7, 6}, {9, 8}, . . .}. The negative integer −2 ∈ Z is the object
{{{5, 2}, {7, 4}, {9, 6}, {11, 8}, . . .}, etc. That is to say, integers are a sub collection of the collection N∗

inf . To
prove the collection of integers is a set, it is sufficient to prove N∗

inf is a set, because of the axiom of subsets.
The Axiom of Subsets establishes that the elements of N∗

inf are sets. However, to prove N∗
inf is a set, the Power

Set Axiom is needed.
Let Z̄ ⊂ P (N∗

inf) the set whose objects are subsets of Z, that are bounded above, in terms of the order defined

for integers (which is different than the order on infinite set numbers). Put differently, A ∈ Z̄ if and only if A ⊂ Z
and max(A) exists, where max(A) is the maximum function in terms of the order of integers. The set A is a
positive real number well represented by the sum of its integer powers of 2. The non negative integers represent
the whole part of the real number, while the negative integers are the fractional part of the real number. This
simply means A ∩ N is the whole part of A, and A ∩ −N is the fractional part. The set of all non negative real
numbers is R+

0 = Z̄ ∪ {∅}. Two positive real numbers are order related A < B if and only if max(A△B) ∈ B.
The addition is defined as before by A ⊕ B = (A△B) ⊕ s(A ∩ B). The supremum can also be found in this
structure of sets. At this point, negative real numbers can be built using the same technique used to build the
negative integers. Every A ∈ R+

0 is identified with a function ⊕A : R+
0 → [A,∞). The new set of positive real

numbers is the set of bijections R+
0 → [A,∞), for all A ∈ R+

0 . Negative real numbers are the inverse functions of
these. This construction will not be discussed further. A different approach is taken.

An alternative method of building the set of real numbers, R, which depends only on natural numbers is
proposed. A construction of the unit interval (0, 1] was given, where every number real number in the unit
interval was represented as an object in N∗

inf . Now, the same set N∗
inf will be used to represent all of the real

numbers in a computable coding.
Each of the positive intervals I1 = (0, 1], I2 = (1, 2],..., and negative intervals−I1 = (−1, 0], −I2 = (−2,−1],...,

is isomorphic to the interval (i
2k
, i+1

2k
], for any i, k ∈ N. Real number intervals of unit length, Ii, will be compressed

into smaller and smaller intervals so as to fit them all in the unit interval as in Figure 5. The interval I1 ⊂ R is
identified with the interval (12 ,

3
4] ⊂ Ninf . The interval I2 ⊂ R is the interval (34 ,

7
8] ⊂ Ninf , etc. The negative

interval −I1 ⊂ R is the interval (14 ,
1
2] ⊂ Ninf , etc. Let X ∈ (12 ,

3
4], then it is an infinite set number such that

1 ∈ X and 2 /∈ X. A set number X ∈ (34 ,
7
8] is an infinite set number such that 1 ∈ X and 2 ∈ X, but 3 /∈ X,

etc. A set number X ∈ (14 ,
1
2] is an infinite set number such that 1 /∈ X and 2 ∈ X. A set number X ∈ (18 ,

1
4]

41

is an infinite set number such that 1, 2 /∈ X and 3 ∈ X, etc. This is easily interpreted in defining the set of all
real numbers. Let X = {1, 2, 3, . . . , n, k1, k2, k3, . . .} ∈ Ninf , where 3 ≤ n + 2 ≤ k1 < k2 < k3 < · · · , then X is
positive real number. A negative real number is X = {n, k1, k2, k3, . . .} with 3 ≤ n + 1 ≤ k1 < k2 < k3 < · · · .
This simply means a positive real number with integer part equal to n − 1 is an infinite set number X with
1, 2, . . . , n ∈ X and n + 1 /∈ X. A negative real number with integer part equal to −(n − 2) is an infinite
set number X with min(X) = n. The fractional part will be given by the remaining objects k1, k2, k3 We
can immediately differentiate a positive set number from a negative set number. For example, The set number
{1, 2, 3, 4, 10, 11, 12, 13, . . .} is positive with integer part equal to 3. The set number {4, 5, 10, 11, 12, 13, . . .} is
negative with integer part equal to −2. The set number {1, 2, 6, 7, 8, . . .} has integer part equal to 1, while
{6, 8, 9, 10, . . .} has integer part −4.

The first natural numbers are place holders for identifying the integer part. Let X ∈ R an infinite set number
and let {k1, k2, k3, . . .} be the fractional part, as just described. The fractional part of X coded as an element of
the unit interval is rn+2({k1, k2, k3, . . .}). To code a real number X ∈ R as an infinite set number use the first
n natural numbers to determine the integer part. Then there are still infinitely many natural numbers left to
determine the fractional part. All that has to be done is displace the fractional part n + 2 places, so that the
fractional part and integer part do not interfere. Displacement up, n + 2 times, is equivalent to applying sn+2.
To recover the fractional part, displace the ki’s back n+ 2 times by applying rn+2. A positive real number with
integer part n is an infinite set number that contains a string of the first positive integers, and the first integer
it leaves out is a cue that the integer part ends there. The integer part is directly determined by the length of
the string. A negative real number is an infinite set number that does not contain the first positive integers. For
every X ∈ R, the numbers min(X) and min(Xc) are well defined, because of the well ordering principle. Exactly
one of these two is equal to 1 and the other is larger than 1. A positive real number is an infinite set number with
min(X) = 1. A negative real number is an infinite set number with min(Xc) = 1. More specifically, if 0 < X ≤ 1
then min(Xc) = 2, and if −1 < X ≤ 0 then min(X) = 2. The equality min(Xc) = 3 is equivalent to 1 < X ≤ 2,
and min(x) = 3 is equivalent to −2 < X ≤ −1. If 2 < X ≤ 3 then min(Xc) = 4, and if −3 < X ≤ −2 then
min(X) = 4. In general, X ∈ (n − 1, n] if and only if min(Xc) = n + 1, and X ∈ (−n,−(n − 1)] if and only if
min(X) = n+ 1.

For example, the fractional part of π is equal to .141596 . . . = 2−3 + 2−6 + 2−11 + 2−12 + 2−13 + 2−14 + · · ·
given by the set {3, 6, 11, 12, 13, 14 . . .} Therefore, the numbers π and −π are represented by

π = {1, 2, 3, 4, 3 + 5, 6 + 5, 11 + 5, 12 + 5, 13 + 5, 14 + 5, . . .}
= {1, 2, 3, 4, 8, 11, 16, 17, 18, 19 . . .}

−π = {5, 3 + 5, 6 + 5, 11 + 5, 12 + 5, 13 + 5, 14 + 5 . . .}
= {5, 8, 11, 16, 17, 18, 19 . . .}

The set of infinite set numbers N∗
inf is defined as R. Real numbers and natural numbers are different types

of sets. A natural number is a finite subset of HFS. A real number is an infinite subset of HFS. Adequate
definitions can be made for addition of real numbers combining addition of natural numbers and addition of
defined for the continuum [0, 1].

Figure 5: Use the fact that (0, 1] is bijective to any interval (n
2k
, n+1

2k
]. Under this representation, the real number

0 ∈ R is the set {2, 3, 4, 5, . . .}. Infinities are the empty set −∞ = ∅, and the set of positive integers +∞ = N1.

42

5.3 Limits and Continuity

Suitable and practical expressions of the concepts of analysis are proposed. The first concept formalized is limit
point. Let P,X ∈ N∗

inf two infinite set numbers. Intuitively, these two objects are close, if their first terms

coincide. Take as an example the set numbers P = {2, 4, 5, 8, 9, 10, 11, 12, 13, . . .} = 2−2 + 2−4 + 2−5 + 2−8 +
2−9 + 2−10 + . . . and X = {2, 4, 5, 8, 9, 14, 15, 16, 17 . . .} = 2−2 + 2−4 + 2−5 + 2−8 + 2−9 + 2−14 + They are
relatively close because the first terms (the largest terms) coincide. The first elements coinciding is equivalent to
the two set numbers being “close”. Another way of saying this is that min(P△X) is a large number. The larger
min(P△X), the larger the elements of P△X become, making the smaller powers (larger terms) coincide. In the
part, larger natural numbers represent the smaller terms of the real number.

Let P ∈ R an infinite set number, and let X a set of infinite set numbers. Then, P is a limit point of
X if there exists XN ∈ X such that min(P△XN) > N , for every N ∈ N. There is one exception to this
definition. The fractional part of some real numbers can be expressed as sum of finite many negative powers
of 2. The definition of limit point for these numbers is defined separately. Suppose P ∈ N∗

inf is an infinite
set number that has finite representation P = {p1, p2, . . . , pk}, where p1 < p2 < · · · < pk. That is to say,
P = {p1, p2, . . . , pk−1, pk + 1, pk + 2, pk + 3, . . .}. The last term 2−pk replaces the terms 2−(pk+1) + 2−(pk+2) +
2−(pk+3) + A set of infinite set numbers is provided such that theses numbers become arbitrarily close
to P , from above. Let X1 = {p1, p2, . . . , pk, pk + 1}, and X2 = {p1, p2, . . . , pk, pk + 2}. In general define
Xi = {p1, p2, . . . , pk, pk + i}. These set numbers Xi are getting closer to P but the previous definition of limit
point is not satisfied. The minimum element of the symmetric difference is not getting larger. In fact, it is the
constant min(P△Xi) = pk. Therefore, a different definition is required for this case. Let P an infinite set number
with finite representation. The number P is a limit point of X if for every N ∈ N there exists XN ∈ X such that
XN = {p1, p2, . . . , pk, pk +N, pn1

, pn2
, . . .}, where pk +N < pn1

< pn2
< · · · . This in turn makes the difference

bounded, |P −XN | ≤ 1
2pk+N−1 = {pk +N − 1}. Let P,X two infinite set numbers with their integer parts equal

and suppose their fractional parts coincide in the first elements,

P = 2m1 + 2m2 + . . .+ 2mk + 2n1 + 2n2 + 2n3 + . . .+ 2n + 2α1 + 2α2 + 2α3 + . . .

X = 2m1 + 2m2 + . . .+ 2mk + 2n1 + 2n2 + 2n3 + . . .+ 2n + 2β1 + 2β2 + 2β3 + . . .

where m1 < m2 < . . . < mk < n1 < n2 < . . . < n < α1 < α2 < · · · and n < β1 < β2 < · · · . The numbers
mi determine the integer part and ni, n are the elements that coincide in the fractional part (the first negative
powers of 2 that coincide). Then, the difference |P −X| < 1

2n is bounded, by {n}.
Infinite set numbers with finite representations can be handled in another, informal, manner. For simplicity,

consider set numbers of (0, 1] ⊆ Ninf . For example, 1/2 ∈ [0, 1] has the representations {1} = {2, 3, 4, . . .}. The
set number P = 1/2 should be a limit point of the set X = {A1, A2, A3, A4, . . .} where the Ai are

A1 = 1 = {1, 2, 3, 4, 5, 6, . . .}
A2 = 3/4 = {1, 3, 4, 5, 6, 7, . . .}
A3 = 5/8 = {1, 4, 5, 6, 7, 8, . . .}
A4 = 9/16 = {1, 5, 6, 7, 8, 9, . . .}

...
...

...

If P = {2, 3, 4, 5, . . .} then min(P△Ai) = 1, for every Ai. Using the finite representation P = {1}, gives
the symmetric differences: P△A1 = {2, 3, 4, . . .}, P△A2 = {3, 4, 5, . . .}, P△A3 = {4, 5, 6, . . .}, P△A4 =
{5, 6, 7, . . .},... In effect, satisfying the condition that for every N ∈ N there exists XN ∈ X such that
min(P△XN) > N .

If P has finite representation and the set numbers Ai tend to P , from below, the same problem cannot occur.

43

For example, take P = 1/2 = {2, 3, 4, 5, . . .} and the set X = {A1, A2, . . .} defined by

A1 = 3/8 = {2, 4, 5, 6, 7, 8 . . .}
A2 = 7/16 = {2, 3, 5, 6, 7, 8 . . .}
A3 = 15/32 = {2, 3, 4, 6, 7, 8 . . .}
A4 = 31/64 = {2, 3, 4, 5, 7, 8 . . .}
A5 = 63/128 = {2, 3, 4, 5, 6, 8 . . .}

...
...

...

It is easily verified that for every N ∈ N there exists XN such that min(P△XN) > N . The symmetric
differences are P△A1 = {3}, P△A2 = {4}, P△A3 = {5}, P△A4 = {6}, P△A5 = {7},

Continuity is described in terms of the order of natural numbers. In the next section a formal definition for
real function is provided. It is used provisionally, for the sake of illustration.

Definition 11. Let f : A ⊆ R → B ⊆ R a real function, and let p a limit point of the domain A. The function
f has limit point p, and the limit is equal to q, if and only if for every N ∈ N there exists M ∈ N such that
min(p△x) > M implies min(f(p)△q) > N .

The function is continuous in p if and only if for every N ∈ N there exists M ∈ N such that min(p△x) > M
implies min(f(p)△f(x)) > N .

The theory of convergence and topological aspects of R are expressed directly in terms of the order of
natural numbers. Using these general indications and the subtraction algorithm, given in [I], it is possible to
define the derivative. The derivative can be treated in two ways. The subtraction algorithm allows for the
traditional definition of derivative, for finding the numerical value f ′(p). However, to prove the existence of
the derivative, there is an alternative definition of a discrete derivative. The quotient of two powers of 2 is
obtained by subtracting the powers, 2n

2m = 2n−m. For a fixed x ∈ A in the domain of f , consider the difference
Dx = min(fp△fx)−min(p△x). If the derivative, at p, is f ′(p) = 1 it will have to be true that Dx tends to 0 as
x tends to p. If the function has derivative f ′(p) = 0 it must be true Dx is unbounded as x tends to p. If Dx

tends to a positive integer, as x tends to p, then the derivative satisfies the inequality 0 < f ′(p) < 1. The last
case, when Dx tends to a negative number, as x tends to p, means the derivative is f ′(p) > 1, greater than 1.
The fast derivative gives a truncated approximation of the nearest integer power of 2, for the absolute value of
the derivative.

The discrete derivative is a criteria for the existence and absolute value of the magnitude of the derivative.
In exchange for not knowing the exact numerical value of the derivative, finding the discrete derivative is compu-
tationally faster. The quotient fp−fx

p−x of floating point numbers is being substituted with a difference of natural

numbers, min(fp△fx) −min(p△x). The end result is that instead of having to calculate two subtractions and
one division of real numbers, the minimum element for two sets of natural numbers and the difference of these
natural numbers is computed.

Alternative constructions of real numbers are found in modern references [A’Campo(2003)],[Arthan(2004)],
[De Bruijn(1976)],[Knopfmacher and Knopfmacher(1988)]. These involve complex objects and cumbersome meth-
ods for proving the existence of the real number system. The proposed set theory has clear advantages in its
simplicity of description of objects and efficient algorithms. That is to say, it stands above other set theories in
theoretical and practical terms.

6 Type Theory and Trees

Another application of the proposed set theoretical foundations of numbers is a theory of types that organizes
and orders objects of all kinds by coding them in the simplest type possible. An account of representations for
general objects of classic mathematics is given. The universe of sets necessary for classic mathematical objects
is well represented in terms of trees. A brief description of the theory of types is also outlined in terms of trees.

44

6.1 Basic Objects In Mathematics

Ordered pairs, and finite sets of ordered pairs, are natural numbers. To define an ordered n-tuple of natu-
ral numbers, recall that even and odd natural numbers were used to tell apart the first component from the
second. One might initially want to solve in the following manner. To well represent ordered 3-tuples use
{1, 4, 7, 10, . . . , 3k− 2, . . .} to represent the first component, then use {2, 5, 8, 11, . . . , 3k− 1, . . .} to represent the
second component, and multiples of three, {3, 6, 9, 12, . . . , 3k, . . .} to represent the third component. This will
give a table similar to (8), of ordered pairs. Table 6 allows to describe ordered 3-tuples.

X 3k − 2 3k − 1 3k

0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
4 13 14 15
5 16 17 18
6 19 20 21
...

...
...

...

Table 6: The elements of this table allow us to represent an ordered 3-tuple as a natural number.

The ordered 3-tuple (0, 0, 0) is the set number 21+22+23 = {1, 2, 3}. Also, (1, 2, 3) is equal to 24+28+212 =
{4, 8, 12}. To represent 4-tuples, a new Table, 7, is needed.

X 4k − 3 4k − 2 4k − 1 4k

0 1 2 3 4
1 5 6 7 8
2 9 10 11 12
3 13 14 15 16
4 17 18 19 20
5 21 22 23 24
6 25 26 27 28
...

...
...

...
...

Table 7: The elements of this table allows to represent an ordered 4-tuple as a natural number.

This manner of defining finite sequences has two big disadvantages that will become clear, when defining a
second method for representing ordered n-tuples. The first is quite obvious: it is not possible to define an infinite
sequence of natural numbers. The easiest way to solve this is by going back to the definition of ordered pairs.
The sets given in (8) are of great importance in the constructions of this section. It is shown again, for reference
in Table 8. Here it is used differently. Only the first two rows are needed to define ordered pairs; it will only be
necessary to use the first two sets (0,) and (1,). The pair (i, j) will be a set of two numbers; its elements will be
the i+ 1-th object of the first row and the j + 1-th object of the second row.

A definition of ordered pair is given, that supersedes the one given before. An ordered pair (i, j) is the set
number

(i, j) = {{1, 2(i+ 1)}, {3, 2(j + 1)}} = {21 + 22(i+1), 23 + 22(j+1)}. (13)

The i+1-st element of (0,) is included to show that i is in the first component. Include the j+1-st element of (1,)
to indicate j is in the second component. For example, the ordered pair (0, 0) is the set number 26+212 = {6, 12}.
The ordered pair (1, 3) is 218 + 2264 = {18, 264}.

Data types are being defined for different mathematical objects. Different kinds of mathematical objects
and relations can be represented as natural and real numbers. An extension of this new representation allows
to define infinite sequence of natural numbers. Select one element, nk, from the set (k,), for every k ∈ N.

45

6 18 66 258 1026 . . . 2 + 22(n+1) . . .
12 24 72 264 1032 . . . 8 + 22(n+1) . . .
36 48 96 288 1056 . . . 32 + 22(n+1) . . .
128 144 192 382 1152 . . . 128 + 22(n+1) . . .
516 528 576 768 1536 . . . 512 + 22(n+1) . . .
...

...
...

...
...

...
22m+1 + 4 22m+1 + 16 22m+1 + 64 22m+1 + 256 22m+1 + 1024 . . . 22m+1 + 22(n+1) . . .

...
...

...
...

...
...

Table 8: The elements of this table allow to represent an ordered pair as a natural number. The elements of the
first row are used to represent the first component, while the elements of the second row are used to represent
the second component. This table is also used for finding a good representation of sequences of real numbers.

Then, 21 + 22(n1+1) ∈ S means n1 is the first natural number of the sequence. The second number is given by
23 + 22(n2+1) ∈ S, and so on. The set number {21 + 22(n1+1), 23 + 22(n2+1), 25 + 22(n3+1), . . .} represents the
sequence (n1, n2, n3, . . .). For example, the sequence (1, 3, 2, 5, 4, . . .) is given by

{2 + 22(1+1), 8 + 22(3+1), 32 + 22(2+1), 128 + 22(5+1), 512 + 22(4+1), . . .} = {18, 264, 96, 4224, 1536, . . .}.

Of course, to define a finite sequence, a k-tuple, use the first k sets, (1,), (2,), . . . (k,). A finite sequence of
natural numbers is a set number of the form

{21 + 22(n1+1), 23 + 22(n2+1), 25 + 22(n3+1), . . . , 22k+1 + 22(nk+1)}.

A natural function, N → N, is an infinite set of ordered pairs. A function of this form is a set number

{{6, B1}, {18, B2}, {66, B3}, {258, B4}, . . .}

where Bi are elements of (1,). If the Bi are all distinct, the function is an injection. If every element of (1,)
has an index Bi, the function is onto N. This represents natural functions as real numbers. There exists a
bijective function from the set of all natural functions, onto a proper subset of real numbers. Of course, an
infinite sequence of natural and a natural function are two representations of essentially the same thing. This
same method of defining a natural function can be used to provide provide a valid construction of an infinite
sequence of natural numbers, using the original definition of ordered pair.

How can a sequence of real numbers be represented? The same question stated differently, How can a (finite
or infinite) sequence of infinite set numbers be well defined? It would be advantageous to find a way of storing
and rescuing the information that determines a sequence ξ = (r1, r2, r3, . . .) where each ri = {ni

1, n
i
2, n

i
3, . . .} is a

real number. Use the set (0,) to represent the elements of r1. Use the set (1,) to represent the elements of r2, etc.

Then, 22(i)+1+22(n
i
j+1) ∈ ξ if and only if ni

j ∈ ri. The infinite sequence of real numbers, (r1, r2, . . .), is represented
by the real number

⋃
i ri. The union of all the ri’s is a real number that represents the infinite sequence (r1, r2, . . .);

it is an infinite set number with infinitely many objects from each set (i,). Actually, any set number with
infinitely many elements of each (i,) is representing a unique sequence of real numbers. An infinite set X ⊂ (0,)
determines a real number. The setX = {2+22(x1+1), 2+22(x2+1), 2+22(x3+1), . . .} is the coding of the real number
X∗ = {x1, x2, x3, . . .}. In the same manner, Y = {8+ 22(y1+1), 8+ 22(y2+1), 8+ 22(y3+1), . . .} ⊂ (1,) is the coding
of Y ∗ = {y1, y2, y3, . . .}. The infinite set number X ∪Y is a real number, whose objects are in (0,)∪ (1,), and the
objects of (0,) are distinguishable from the objects of (1,). The objects in (0,) give the first component, and the
second component is given by the elements of (1,). This provides a good representation of the ordered pair of real
numbers, (X∗, Y ∗), as a single real number X∪Y . To represent ordered 3-tuples of real numbers, use the set (2,),
also. Let Z∗ = {z1, z2, z3, . . .} ⊂ N a real number, then Z = {32+22(z1+1), 32+22(z2+1), 32+22(z3+1), . . .} ⊂ (2,).
And, the ordered 3-tuple (X∗, Y ∗, Z∗) is the real number X ∪ Y ∪ Z. An infinite sequence of real numbers
(r1, r2, r3, . . .) is represented by a single real number. A bijective function from the set of all real sequences
onto a proper subset of real numbers has been described. A sequence of real numbers is well represented by a
single real number. And, it has also been shown that a function N → N is well represented by a real number.

46

Consequently, a sequence (f1, f2, . . .), of functions fi : N → N, can be represented as a single real number. In
summary, a second definition for ordered pairs is given, that is a more powerful definition than the first because
it allows to represent an infinite sequence of natural numbers, as a real number. Moreover, if ξ is a countable
sequence of real numbers, it is also represented as a real number. Therefore, a good representation of functions
N → N, and sequences of these functions, is obtained.

A coding of sequences of sequences can also be described. Consider first the simplest kind, a sequence
T = (S1, S2, . . .) of sequences, Si, of natural numbers. Every infinite sequence of natural numbers can be coded
as a real number and every sequence of real numbers can be coded as a real number, it follows that a sequence
of sequences of natural numbers can be coded as a single real number.

Now, let ξi = (ri1, r
i
2, r

i
3, . . .) a sequence of real numbers, for every i ∈ N, and let Ξ = (ξ1, ξ2, ξ3, . . .) the

sequence of those. It is easy to construct a real number representing this object. This is true because every
sequence ξi, of real numbers, is represented by a real number. The sequence of real numbers, Ξ, can in turn
be reduced to a single real number. A real matrix of infinitely (countable) many columns and rows can be
represented by a single real number.

There are more similarities between natural numbers and real numbers. A natural function is a set of natural
numbers and each element of the set coded a component n → fn of the function. Similarly, a real function will
be coded by a set of real numbers, and each real number of the set will be coding a component x → fx of the
real function. An ordered pair of real numbers has been defined as a single real number, now a real function can
be defined. A function is a collection of components fx = (x, fx), and every ordered pair of real numbers fx ∈ R
is a real number. Therefore, the function f : R → R can be represented by a set of real numbers {fx}x∈R. Every
real function R → R is the set of real numbers

f = {{ax1 , ax2 , . . . , bx1 , bx2 , . . .}}x∈R,

where x = {axi }i ⊂ (0,) and f(x) = {bxi }i ⊂ (1,). This means fx = x ∪ f(x) = {ax1 , ax2 , . . . , bx1 , bx2 , . . .}. The
function is one-to-one if f(x)△f(y) ̸= ∅ for x ̸= y. The function f is onto R if for every infinite subset A ⊂ (1,),
there exists an object x ∈ R such that A = fx ∩ (1,). A real function is bijective if for every infinite subset
A ⊂ (1,) there exists exactly one x ∈ R such that A = fx ∩ (1,).

Extending previous results, any sequence of real functions, (f1, f2, . . .), is a set of real numbers. Just as
(0,) and (1,) are used to define a function f1 : R → R, the set (2,) and (3,) can be used to define a function
f2 : R → R. In the same way (4,) and (5,) are used to define a function f3 : R → R, etc.

There is another consequence of coding a real function R → R as a set of real numbers. A real operation
R → (R → R) can be coded as a set of real numbers. An object R → (R → (R → · · · (R → R) · · ·)) is coded as a
set of real numbers for finite iterations of the image. In the next subsection, type theory is described using trees.

6.2 Trees

It has been shown that natural numbers are the finite sets that can be built recursively with the function ⊕1.
These sets can be well represented by finite tree structures. Trees are used to represent natural numbers first,
then all types of objects. Sets and trees are equivalent. A finite set number is a set of finitely many smaller set
numbers. The definition of trees is equivalent. A tree is a trunk (the principle node); the set X. Every branch of
the trunk is an element of the set X. For example, a single trunk with no branches is the set number 0. Suppose
the tree of X is known. How is the tree corresponding to X ⊕ 1 found? Add a branch that is a 0-tree (add 1
unit). The set number 1 is a trunk with one 0-branch; 1 = {0}. This in illustrated in Figure 6.

A tree is a graph of nodes and edges such that (i) A trunk can be identified: a principle edge with a finite
number of branches attached to one of its nodes. All branches are attached to the same node of the trunk. (ii)
Each branch on the tree is a tree. (iii) A single edge is a tree; the 0-tree. The successor of a tree is obtained by
adding a single edge to the trunk; attach a 0-tree to the trunk. Adding an edge to the 0-tree gives its successor,
the 1-tree, which is two edges joined together at one node. Adding an edge to the 1-tree, yields its successor, the
2-tree, etc.

An extra rule for defining an equivalence class on finite trees is needed. If a tree has two identical branches,
substitute these two identical branches with a single branch, the successor. This process is called reduction. If
a tree can be reduced to obtain another tree, they are in the same equivalence class. An irreducible tree is said
to be in canonical form. Reducing the 2-tree, gives the canonical form. To reduce the 2-tree, substitute the two
identical 0-trees with a single 1-tree. Adding a single edge to the result of that, results in the canonical form of

47

the 3-tree because it contains no identical branches. If an edge is added to the 3-tree, reduction of branches will
have to be applied two times before reaching the canonical form of the 4-tree. First take away the two 0-trees
and add a 1-tree. But, there is already another 1-tree; there are two identical 1-trees. Replace those trees with
a single 2-tree. Every natural number is associated an equivalence class of finite trees, and a single canonical
tree. Every branch on the canonical tree of a set number X corresponds to a natural number k ∈ X. Every
tree is made up of smaller trees, and a well defined method of building trees is provided. The canonical tree
associated to the set number X, has #(X) many branches. Each branch is defined in the same way. A natural
number is defined by its cardinality; and the cardinality of its elements; and the cardinality of the elements of
its’ elements; etc. Trees are used to represent real numbers, also. A real number is a tree with infinitely many
different branches, each branch a natural number. A set of real numbers is a tree with infinitely many branches,
each a real number. The next subsection is a formalization of the concept of types. The concept of number is
generalized. A number is a tree, and every mathematical object is a number in this sense.

6.3 Type Theory

Finite trees are objects of Type-0. Trees of infinite branches with each branch being an object of type-0 are
called objects of Type-1. For example, a natural number is an object of Type-0 and a real number is an object
of Type-1. A tree whose branches are all objects of Type-1 is an object of Type-2. An example of an object of
Type-2 is a set of real numbers.

Use the Replacement Axiom to build a tree with branches of Type-0 and Type-1. An object with elements
of these two types is an object of Type-3. A set consisting of natural and real numbers is an object of Type-3.
The power set of a Type-2 object is an object of Type-4; a tree whose branches are Type-2 objects. A set of sets
of real numbers is an object of Type-4. The set of integers Z is an object of Type-2, while the set of positive real
numbers Z̄ is an object of Type-4. That is why it can be better to code the real numbers as infinite set numbers;
infinite set numbers are objects of Type 1. It will ultimately depend, of course, of the application.

Define Type-n objects in a manner analogous to the definition of natural numbers. The power set axiom
is required for the existence of P (N), P (P (N)), P (P (P (N))), P (P (P (P (N)))), . . . , A, P (A), . . . which are sets of
type 2, 4, 16, 216, . . . , n, 2n, . . ., respectively. A Type-8 object is a tree whose branches are all Type-3 objects.
The power set of a Type-4 object is a Type-16 object, etc. Other types are found using the replacement axiom
to combine subsets of these power sets. A Type-7 object consists of objects of three different types, 0, 1, 2. In
Section 6, real sequences are coded as Type-1 objects, and real functions are coded as Type-2 objects.

The next step in classifying types is to consider trees with infinite many types of branches. A tree with
branches of Type-n1, Type-n2, Type-n3 . . . for infinite many types is called an object of infinite Type-1,0. An
object of infinite Type-1,1 is a tree that only has branches of infinite Type-1,0. An object of Type-1,2 is a tree
that has only branches of Type-1,1. A tree with branches of both Type-1,0 and infinite Type-1,1 is an object of
infinite Type-1,3. If all the branches of a tree are objects of Type-1,2, it is an object of infinite Type-1,4. All

Figure 6: Canonical trees can be built easily, given a set number. The tree representation of 6 = {1, 2} is a tree
with two branches; a 1-tree and a 2-tree. The canonical tree for 7 = {0, 1, 2} has three branches. One branch
is the 0-tree, the second branch is the 1-tree and the third branch is the 2-tree. The canonical tree of 8 = {3}
is a trunk with one branch, which is the 3-tree. The canonical tree of 151 = {0, 1, 2, 4, 7} has five branches:
0, 1, 2, 4, 7-trees.

48

infinite Types-1, k are constructed in a manner analogous to natural numbers.
Consider a tree whose branches are all objects of infinite type; the elements of the tree are objects of Type-

1, n1, Type-1, n2, Type-1, n3, . . . for infinitely many infinite types. This tree is an object of infinite Type-2, 0.
Trees whose objects are only objects of Type-2, 0 are called objects of Type-2, 1. A tree whose objects are all of
Type-2, 1 is an object of Type-2, 2. A tree with objects of Type-2, 0 and Type-2, 1 is an object of Type-2, 3, etc.

An object of infinite Type-3, 0 is a tree that has branches of finite type and infinite Type-1, k. A tree with
objects of Type-3,0 is an object of Type-3,1, and so on. An object of infinite Type-4,0 is a tree with infinite
many types of objects of Type-2, k. An object of Type-4, 0 has objects of Type-2, n1, Type-2, n2, Type-2, n3 . . .
for infinite many Type-2, k objects. An object of Type-4, 1 is a tree with branches of Type-4, 0, etc. An infinite
Type-5,0 object consists of branches of finite type and infinite types 2, k. A Type-6, 0 object consists of objects
of types 1, k and types 2, k, etc. Continue in this manner until all objects of Type-m,n, for every m,n ∈ N, have
been described. Higher hierarchy types are left for future analysis.

7 Conclusions

The importance of the axiomatic base is usually undermined because it does not bring any new results or
methods into most practical areas of mathematics. Instead, the axiomatic base of mathematics is seen as a
stone in the path; an obstacle to be dealt with and forgotten. The natural number system proposed allows for
natural constructions of classic structures of mathematics. Finite groups are described using natural numbers.
Finding all finite groups of n objects is still not trivial but a better notion of attacking this problem is acquired.
A minimum set of independent equations that defines each group is obtained in the process. Two groups are
isomorphic if their canonical block forms are identical. The set of all finite groups is totally and linearly ordered.
This linear order on finite groups is well behaved with respect to cardinality and other aspects. In particular,
the commutative group Zn is the smallest group of n objects; Zn < G for every group G such that |G| = n. If
n = pn1

1 pn2
2 pn3

3 · · · pnk

k is the prime factorization of n, then the commutative group Zn1
p1

⊕ Zn2
p2

⊕ Zn3
p3

⊕ · · · ⊕ Znk
pk

is the largest commutative group of n objects. This last behavior was not treated with detail, and is left for
future work. Finite groups are also ordered internally. The elements of any finite group are ordered through
the canonical naming functions. A criteria for defining equivalent objects of a fixed finite group is obtained,
that provides the automorphisms of the group. The set theory for natural numbers was extended to describe
infinite mathematical objects such as real numbers, real functions, real valued matrices, sets of real numbers, and
structures derived from those, etc. Results pursued in future work can include a thorough description of groups,
rings, fields and linear spaces, in the finite and infinite cases separately. Another line of work will include a more
comprehensive description of the calculus of real numbers. The theory of types and the Continuum Hypothesis
can be considered for future work. There are a variety of ways for coding the information of mathematical
structures. Natural data types for the basic structures have been provided, although this library of types must
be completed. Trees are used to represent any type of mathematical object. The general procedure for expressing
mathematical objects using the smallest type possible is described.

The computational aspects can also be treated with detail, focusing on physical models to represent the
arithmetic of Energy Levels. In [Magidor], the author mentions the possibility that “...we will be able to compare
between different Set Theories according to what type of mathematical hinterland they provide for theoretical
Physics.” Aside from classic computational schemes that can be improved, such as the one proposed for a simple
and linear fast adder, modern computational schemes can also be explored. Encoding and storing mathematical
objects (structures of information), is an option to be considered for future work. On the other hand, the linear
sum of two waves, in phase, with equal wavelength and frequency, is equal a wave with double the amplitude.
The linear superposition of constructive interference from two coherent sources satisfies the numeric principle
for addition, 2n + 2n = 2n+1. Thus, measurements on the amplitude of waves can be used as a computational
arithmetic model. This could provide a valid approach, for a linear optical computing scheme. Most recently,
in [Miscuglio(2020)], it has been noted that “...the wave nature of light and related inherent operations such as
interference and diffraction, can play a major role in enhancing computational throughput...” And that “In this
view, photons are an ideal match for computing node-distributed networks.” An implementation of the finite-state
machine of addition can be a system of coherent wave sources.

49

References

[Corry(2010)] Leo Corry. David Hilbert and the Axiomatization of Physics (1898–1918): From Grundlagen der
Geometrie to Grundlagen der Physik. Springer Netherlands, 2010

[Benacerraf(1965)] Benacerraf, Paul. What Numbers Could Not Be; Philos. Rev. 1965, 74.

[Thiele(2003)] Rüdiger Thiele. Hilbert’s Twenty-Fourth Problem. The American Mathematical Monthly, 110:1,
1-24, 2003. DOI: 10.1080/00029890.2003.11919933

[Ramirez(2019)] Ramı́rez, J.P. A New Set Theory for Analysis; Axioms 2019, 8, 31.

[Uma(2012)] R. Uma, Vidya Vijayan, M. Mohanapriya, Sharon Paul. 2012. Area, Delay and Power Comparison
of Adder Topologies. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3,
No.1, February 2012.

[Singh(2009)] R.P.P. Singh, Parveen Kumar, Balwinder Singh. Performance Analysis Of Fast Adders Using
VHDL. 2009 International Conference on Advances in Recent Technologies in Communication and Com-
puting. IEEE Computer Society.

[Lutz(1994)] D. R. Lutz, D. N. Jayasimha. The Power of Carry Save Addition. Department of Computer and
Information Science, The Ohio State University. 1994.

[Sun] Yiqiu Sun, Haichao Yang, et. al. ASIC Design for Bitcoin Mining. University of Michigan.

[Wang(2023)] Chenyu Wang, Ge Shi, Fei Qiao, Rubin Lin, Shien Wu and Zenan Hu. Research Progress in
Architecture and Application of RRAM with Computing-In-Memory. Nanoscale Adv., 2023, 5, 1559-1573.

[Hennessy(1990)] Hennessy, J.L. and Patterson, D.A. Computer Architecture: A Quantitative Approach.Morgan
Kaufmann, Waltham.1990.

[Lovyagin(2021)] Lovyagin, Yuri N., and Lovyagin, Nikita Yu. Finite Arithmetic Axiomatization
for the Basis of Hyperrational Non-Standard Analysis; Axioms 10, no. 4: 263. 2021.
https://doi.org/10.3390/axioms10040263

[Bernays(1991)] Bernays, Paul. Axiomatic Set Theory; Dover: New York, NY, USA, 1991.

[Ackermann(1937)] Ackermann, W. Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Math. Ann. 114,
305–315.

[Ladner and Fischer(1980)] R. E. Ladner and M. J. Fischer. Parallel Prefix Computation; Journal of the ACM,
27(4), pp. 831-838, October 1980.

[Metropolis, Rota and Tanny(1980)] Metropolis, N.; Rota, G.C.; Tanny, S. Significance Arithmetic: The Carry-
ing Algorithm; Journal of Combinatorial Theory, Series A, 1973, 14, 386–421.

[Abrar(2019)] Abrar, M., Elahi, H., Ahmad, B.A. et al. An area-optimized N-bit multiplication technique using
N/2-bit multiplication algorithm. SN Appl. Sci. 1, 1348 (2019).

https://doi.org/10.1007/s42452-019-1367-6

[Emmart(2011)] Niall Emmart and Charles C. Weems. High Precision Integer Multiplication with a GPU Using
Strassen’s Algorithm with Multiple FFT Sizes. Parallel Processing Letters, Vol.21, No. 03, pp. 359-375
(2011). https://doi.org/10.1142/S0129626411000266

[Taib(2020)] Muhammad Ikmal Mohd Taib, Muhammad Najmi Zikry Nazri, et. al (2020). Design
of Multiplication and Division Operation for 16 Bit Arithmetic Logic Unit (ALU). JOUR-
NAL OF ELECTRONIC VOLTAGE AND APPLICATION VOL. 1 NO. 2 (2020), 46-54. DOI:
https://doi.org/10.30880/jeva.2020.01.02.006

[Rahman(2013)] Mohammed Ziaur Rahman. Parallel Self-Timer Adder (PASTA). United States Patent Applica-
tion, May 9, 2013.

50

[Franklin(1994)] Franklin, M.A. and Pan, T. (1994) Performance Comparison of Asynchronous Adders. Proceed-
ings of IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems, Salt Lake City,
3-5 November 1994, 117-125. https://doi.org/10.1109/ASYNC.1994.656299

[Zhang(2013)] Ting Zhang, Cheng Xu, Tao Li, Yunchuan Qin and Min Nie. An Optimized Floating-
Point Matrix Multiplication on FPGA. Information Technology Journal, 12: 2013 1832-1838. DOI:
10.3923/itj.2013.1832.1838

[A’Campo(2003)] A’Campo, N. A Natural Construction for the Real Numbers. arXiv, 2003;
arXiv:math.GN/0301015 v1.

[Arthan(2004)] Arthan, R.D. The Eudoxus Real Numbers. arXiv, 2004; arXiv:math/0405454.

[De Bruijn(1976)] De Bruijn, N.G. Definig Reals Without the Use of Rationals; Koninkl. Nederl. Akademie Van
Wetenschappen: Amsterdam, The Netherlands, 1976.

[Knopfmacher and Knopfmacher(1988)] Knopfmacher, A.; Knopfmacher, J. Two Concrete New Constructions
of the Real Numbers. Rocky Mt. J. Math. 1988, 18, 813–824.

[Magidor] Magidor, Menachem. Some Set Theories are More Equal. Preliminary Draft.

[Miscuglio(2020)] Miscuglio, Mario. Photonic Tensor Cores for Machine Learning. Appl. Phys. Rev. 7, 031404
(2020); https://doi.org/10.1063/5.0001942

Funding

This research received no external funding.

Acknowledgments

Special Thanks to my Professors at undergraduate school. I am specifically thankful to Ms. Sofia Ortega Castillo
who has helped me to prepare and organize this material, for talks given at the 52nd National Congress of
Mathematics (2019, Monterrey, México), and encouraged me to pursue publication of the material. I am indebted
to my professor in group theory, Alonso Castillo Ramı́rez who has assisted me with all kinds of questions that
came up during the time I wrote some of the details on groups. And, to my professor in analysis and probability
theory, Victor Pérez Abreu Carreón who has always been a great teacher and friend, whose conversations and
classes have inspired a great deal of the work I have tried to carry out. Any corrections or changes to be made
are sole responsibility of the author.

Conflicts of Interest

The author declares no conflict of interest.

51

A Simple and Linear Fast Adder (Patent Pending)

Disclosed herein is a fast adder design based on a novel axiomatization of mathematics, of natural and real num-
bers, by the author. Addition is a Finite State Machine that, on an average, takes log2 n iterations to calculate
a n-bit addition. Further, for the proposed fast adder, the probability of a n-bit addition taking k ≤ n iterations
to complete, is equal to the probability of k consecutive heads in n fair coin tosses. The circuitry is linear and
simple, in the sense that adding bits to the inputs does not complicate the circuit topology. The growth is
linear, and the instruction set is constant, and hardware based. The Figures presented in this sections are num-
bered 1-11, and should not be confused with the figures of the previous sections which were numbered 1-6. The
figures pertaining the patent, will be referenced by the abbreviation ”FIG.”, followed by the number of the figure.

BACKGROUND

[0001] The subject matter of the present invention is related to a general-purpose fast adder, which is de-
signed in the form of a sequential logic circuit. Particularly, the present invention proposes a fast adder defined
in terms of a finite state machine that replaces traditional carry-over algorithms of addition, based on a novel
axiomatization of mathematics, by the author. The adder constitutes a direct application of this foundation of
mathematics which serves as supporting material for several aspects, including further applications, of the Simple
and Linear Fast Adder.

[0002] Efficient and inexpensive Central Processing Units (CPUs) or processing units with low dissipation are
an ever growing priority. One of the crucial subunits of the CPUs is an Arithmetic Logic Unit (ALU). Typically,
the ALU is responsible for performing the actual arithmetic and logical operations in the CPUs. The efficiency
and performance of the ALU generally depends on specific components of the ALU, namely, the adder and the
bit shift component.

[0003] One of the basic problems with an existing adder, such as a Ripple Carry Adder, is the propagation
delay. A traditional solution to overcome this is to use a parallel adder. Further, other solutions such as a
Carry Look-Ahead (CLA), Carry Select, Carry Skip, and Carry Increment adders face their own problems. For
example, in the case of CLA, if the number of bits is increased, the area and complexity of the circuit increases
considerably. Therefore, the CLA fast adders of more than four bits are generally built using parallel 4-bit adders.
This multi-level structure adds up to the propagation time delays.

[0004] In view of the above limitations in the existing adders, it would be advantageous to have an adder that
offers linear growth and complexity irrespective of the increase in the number of bits.

[0005] The information disclosed in this background of the disclosure section is only for enhancement of un-
derstanding of the general background of the invention and should not be taken as an acknowledgement or any
form of suggestion that this information forms the prior art already known to a person skilled in the art.

SUMMARY

[0006] It is an objective of the present invention to provide a general-purpose fast adder having a small
count of ‘AND’ and ‘XOR’ logic gates, setting a new standard in the design and manufacture of ALU by provid-
ing efficiency that is comparable to parallel adders, while having a reduced material, production, and energy costs.

[0007] It is a further objective of the invention to design a fast adder that is implemented based on an arith-
metic and real number model and which can be implemented for operation on signed and rational approximations
to real numbers, with a few minor modifications.

[0008] It is a further objective of the invention to provide a universal fast adder of linear area, with logarithmic
time delay.

[0009] In view of the foregoing, an embodiment of the present disclosure relates a general purpose fast adder

52

that is in the form of a sequential logic circuit, based on a finite state machine that is not time constant. On an
average, it takes log2 n iterations to complete addition of two n-bit numbers. The proposed fast adder has the
advantages of linear growth and complexity, in the sense that adding one bit of input requires adding a subunit
consisting of four registers and five logical gates, and the subunits are connected in series. The instruction set
does not increase when the number of bits is increased. The performance of the adder is potentially comparable
to the existing fast adders, while using five logical gates (one XOR, and four AND) and four registers of memory,
per bit of input. In an implementation according to the present invention, the four bit adder presented here uses
sixteen AND gates, four XOR gates and sixteen one bit registers. This adder has linear area and complexity,
and logarithmic delay. The power dissipation of the adder is theoretically constant, due to constant gate depth.
Instruction set is also constant and independent of the number of bits of input.

[0010] In an implementation, the proposed invention is flexible and compatible with different signed repre-
sentations. The proposed ALU architecture is able to support operands for integer and rational approximations
to real numbers. As an example, the operations can include, without limiting to, left/right shift (multiplica-
tion/division by 2), addition, signed operations, and other operations derived thereof.

[0011] In an embodiment of the present disclosure, the four-bit adder component is configured to support
integer type data and rational approximations to real number type data.

[0012] In another embodiment of the present disclosure, the four-bit adder component is configured to per-
form operations comprising at least one of left shift operation, right shift operation, addition, signed operations
and one or more derived operations. In an embodiment, performing the operations comprises representing the
numbers in a binary form in corresponding set of natural numbers, such that, each number is a set of smaller natu-
ral numbers, wherein elements of the set of smaller numbers are denoted in powers of 2 in a binary representation.

[0013] In another embodiment of the present disclosure, the linear fast adder comprises determining a sym-
metric difference corresponding to the operations performed at the four-bit adder component, the determining
comprising saving an initial state of the operations in at least one one-bit registers in the four-bit adder com-
ponent, directing output of each of the one-bit registers in two disjoint paths and computing the symmetric
difference and intersection in the output of each of the one-bit registers. In an embodiment, the bit configura-
tions saved in the one-bit registers are passed through at least one XOR gate in the four-bit adder component
for yielding the symmetric difference. The bit configurations saved in the one-bit registers are passed through at
least one AND gate in the four-bit adder component for determining intersection in the output.

[0014] In another embodiment of the present disclosure, to represent a rational approximation of non-negative
real numbers, a fraction of the bits is used for the rational part and the remaining bits are used for the integer part.

[0015] In another embodiment of the present disclosure, adding a single bit to the operands requires adding
of a sub-unit of four bits and five logic gates in a linear manner to the four-bit adder component.

[0016] In another embodiment of the present disclosure, the time taken by the linear fast adder is equal to
the sum of the two gate delays, and the reading and writing process.

[0017] In another embodiment of the present disclosure, clock cycles for the linear fast adder remain shorter
depending on the gate depth and constant instructions, such that an increase in speed of memory writing process
results in a compounded reduction of time.

[0018] In another embodiment of the present disclosure, an instruction set associated with the linear fast
adder is constant and is independent of the number of bits of input provided to the linear fast adder.

[0019] In another embodiment of the present disclosure, the operation of the linear fast adder is controlled
based on an arithmetic model that defines addition operations in terms of a finite state machine. Here, each state
of the finite state machine comprises two columns and each column represents a finite configuration of energy
levels representing one natural number. In a subsequent state of the finite state machine, the finite configuration

53

on the left column of the two columns represents the energy levels that are not repeated in the preceding state
and the finite configuration on a right column of the two columns represents objects that are repeated from the
preceding state.

[0020] The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to
the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features
will become apparent by reference to the drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illus-
trate exemplary embodiments and, together with the description, explain the disclosed principles. In the figures,
the leftmost digit(s) of a reference number identifies the figure in which the reference number first appears. The
same numbers are used throughout the figures to reference like features and components. Some embodiments of
system and/or methods in accordance with embodiments of the present subject matter are now described, by
way of example only, and regarding the accompanying figures, in which:

[0022] FIGURE 1 shows a graphical representation of an exemplary operation (15 + 23 = 38), in accordance
with some embodiments of the present disclosure.

[0023] FIGURE 2 shows an external view of one-bit data register, in accordance with some embodiments of
the present disclosure.

[0024] FIGURE 3 illustrates use of exemplary registers RA/RA′ and RB/RB′ with input ”i”, output ”o”
and logic gates, in accordance with some embodiments of the present disclosure.

[0025] FIGURE 4 shows a full view of a four bit adder along with “enable” and “set” and connections to the
control unit, in accordance with some embodiments of the present disclosure.

[0026] FIGURE 5 shows a flow diagram for the instruction set, where the instruction set is constant and
independent of the bit length of inputs, in accordance with some embodiments of the present disclosure.

[0027] FIGURE 6 shows addition of rational and real numbers as an extension of the natural number arith-
metic proposed, in accordance with some embodiments of the present disclosure.

[0028] FIGURE 7 shows a complete structure of the fast adder, compatible with multiplication and division,
in accordance with some embodiments of the present disclosure.

[0029] FIGURE 8 shows an exemplary control unit and its internal parts, in accordance with some embodi-
ments of the present disclosure.

[0030] FIGURE 9 shows an alternative arrangement of the fast adder including double edge triggered flip
flops, in accordance with some embodiments of the present disclosure.

[0031] FIGURE 10 shows a basic subunit for the fast adder, such that one of these subunits handles one bit
of input and is connected in series to give an n-bit adder, in accordance with some embodiments of the present
disclosure.

[0032] FIGURE 11 shows a modification of the subunit, which is modified to handle three inputs, in accor-
dance with some embodiments of the present disclosure. The method depicted by this figure is less convenient,
in most aspects, and different from the multi-operand rectangular grid defined in section 2.

[0033] It should be appreciated by those skilled in the art that any block diagrams herein represent conceptual
views of illustrative systems embodying the principles of the present subject matter. Similarly, it will be appre-

54

ciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various
processes which may be substantially represented in computer readable medium and executed by a computer or
processor, whether such computer or processor is explicitly shown.

DETAILED DESCRIPTION

[0034] In the present document, the word “exemplary” is used herein to mean “serving as an example, in-
stance, or illustration.” Any embodiment or implementation of the present subject matter described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.

[0035] While the disclosure is susceptible to various modifications and alternative forms, specific embodiment
thereof has been shown by way of example in the drawings and will be described in detail below. It should be
understood, however, that it is not intended to limit the disclosure to the specific forms disclosed, but on the
contrary, the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the
disclosure.

[0036] The terms “comprises”, “comprising”, “includes”, or any other variations thereof, are intended to cover
a non-exclusive inclusion, such that a setup, device, or method that comprises a list of components or steps does
not include only those components or steps but may include other components or steps not expressly listed or
inherent to such setup or device or method. In other words, one or more elements in a system or apparatus
preceded by “comprises... a” does not, without more constraints, preclude the existence of other elements or
additional elements in the system or method.

[0037] In the following detailed description of the embodiments of the disclosure, reference is made to the
accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodi-
ments in which the disclosure may be practiced. These embodiments are described in sufficient detail to enable
those skilled in the art to practice the disclosure, and it is to be understood that other embodiments may be
utilized and that changes may be made without departing from the scope of the present disclosure. The following
description is, therefore, not to be taken in a limiting sense.

[0038] An overview of the proposed invention:

[0039] For a better understanding of the proposed invention, the following paragraphs provide an introduction
to the simple mathematical background of the arithmetic logic and provide a general overview of the invention.
In an embodiment, the numbers are written in binary form. However, instead of treating numbers as a sequence
of binary symbols, they are treated as sets of natural numbers. For example, the integer seven, 7 = 111 in binary
form, would be represented as the set of natural numbers {0, 1, 2}. The number twelve, 12 = 1100, is represented
by the set {2, 3}. The number 21 = 10101 is represented by the set {0, 2, 4}. Each natural number is a set of
smaller natural numbers, and the elements of the set are the powers of 2 in binary representation.

[0040] Similarly, addition is also treated in terms of sets, and not sequences. For example, consider the sum
7+13 = (20+21+22)+(20+22+23), which is the sum of sets {0, 1, 2}⊕{0, 2, 3}. Here, two new sets are formed
- symmetric difference and intersection. That is, the powers that are not repeated {1, 3}, and the powers that
repeat {0, 2}. To add a power of 2 with itself (i.e., numbers in the intersection), simply add ”1” to that power,
2n + 2n = 2n+1. Therefore, the sum can be rewritten as 7 + 13 = (21 + 23) + (20+1 + 22+1). The first term,
21 + 23, represents the symmetric difference A△B, while the second term 20+1 + 22+1 = (20 + 22) + (20 + 22)
represents the intersection. The sum has been reduced to 7 + 13 = (21 + 23) + (21 + 23). Iterating, there is no
symmetric difference. And, adding “1” to the repeated powers gives 7 + 13 = 21+1 + 23+1 = 22 + 24 = 20.

[0041] If A,B are two finite sets of natural numbers, they can be added using the same method. Form two
new sets A′ = A△B and B = s(A ∩ B), where s is the function that adds one unit, to the elements of A ∩ B.
Then A + B = A′ + B′. It is guaranteed that, in a finite number of iterations, the intersection A(k) ∩ B(k) = ∅
becomes the empty set. This yields the final answer A(k+1), because

55

A+B = A(k+1) +B(k+1)

= A(k+1) + s(∅)
= A(k+1)

[0042] A second example is 15 + 23 = 38 of FIG. 1. The operands in the initial state are A = {0, 1, 2, 3}, and
B = {0, 1, 2, 4} because 15 = 20+21+22+23 and 23 = 20+21+22+24. The second state is A′ = A△B = {3, 4},
and B′ = s(A ∩ B) = {0 + 1, 1 + 1, 2 + 1} = {1, 2, }. The next state is given by A′′ = A′△B′ = {1, 2, 4} and
B′′ = s(A′ ∩ B′) = {3 + 1} = {4}. Iterating again gives A′′′ = {1, 2} and B′′′ = {4 + 1} = {5}. Iterating once
more, a stable state is reached; A(4) = {1, 2, 5} and B(4) = 0.

[0043] The process described herein is a finite state machine. Each state is composed of two columns. Each
column is a finite configuration of energy-levels representing one natural number, as is illustrated in FIG. 1. A
particle in the basic level ”0” is worth 1 unit, and a particle in level ”1” is worth 2 units. A particle in level ”2”
is worth 4 units, and in general a particle in level ”n” is worth 2n units. A finite configuration of particles in a
column represents a set number, so that each state is a pair of natural numbers. As shown in FIG. 1, the initial
state S(t0) is given by the inputs A,B. The next state, S(t1) is given by two new columns. The configuration
of the left column is given by the energy levels that were not repeated in state S(t0). The right column in S(t1)
is given by the repeated objects, displaced one level up. The configuration of state S(t2) is defined similarly in
terms of state S(t1). The left column of state S(t2) is given by the energy levels not repeated in state S(t1). The
configuration in the right column of state S(t2) is given by the energy levels repeated in state S(t1) but displaced
one level up. In general, the left column of state S(tk+1) is given by the energy levels not repeated in state S(tk).
The right column of state S(tk+1) is given by a displacement, one level up, of the energy levels repeated in state
S(tk). In a finite number of steps, a stable state is reached, where no particle occupies the right column. The
result of the sum is given in the left column.

[0044] In an embodiment, the basic idea behind the circuit implementation of this addition algorithm is to
receive two inputs A,B and output two new numbers A′ = (A△B) and B′ = s(A∩B). These two new numbers
will satisfy A′ + B′ = A + B. Iterate the process using A′, B′ as new inputs, to obtain A′′, B′′ which satisfies
A′′ + B′′ = A + B. In a finite number of iterations B(k) becomes zero. For a finite integer k, it is true that
B(k) = 0 and the sum is A(k) = A + B. This process will take, on average, log2 n steps, where n is the number
of bits. It takes at most n steps to terminate, and the probability for the process to end in k ≤ n steps is the
probability of k successive heads in n coin tosses.

[0045] In an embodiment, to add two n bit numbers, four n bit registers, RA,RA′ and RB,RB′ are required.
For example, RB′ is the register of bits RB′0, RB′1, . . . , RB′(n − 1). Registers will have “set” and “enable”
connections for read and write functions, respectively. When registers RA and RB are on “set”, registers RA′

and RB′ are on “enable”. Similarly, when registers RA and RB are on “enable”, registers RA′ and RB′ are on
“set”.

[0046] In an embodiment, the initial state S(t0) is saved in the RA and RB registers. These registers output
their stored memory which will go through two different paths. One path will treat symmetric difference and
the other will handle the intersection. The bit configuration saved in RA,RB is enabled to go through XOR
gates, yielding symmetric differences. The definition of symmetric difference is equivalent to the truth table of
the XOR gate. The output of each XOR gate will be saved in the same significant bit of the RA′ register. On
the second path, intersection is determined by AND gates. The output of each AND gate will be saved in the
next significant bit of the RB′ register. The intersection is displaced one level up, and this is reflected with the
bit shift. At this point, state S(t1) is stored in registers RA′, RB′. This represents the first iteration of our finite
state machine. The bits stored in registers RA′, RB′ will be enabled to move through the XOR and AND gates.
The result will be saved in the RA,RB registers, storing state S(t2) in registers RA,RB. Continue to move
back and forth in this manner until the stopping condition is met. The stopping condition is that the output of
RB/RB′ (whichever is enabled) is equal to the zero vector.

56

[0047] The following components are needed. Four n bit registers, RA,RA′, RB,RB′. A total of n XOR
gates, and 4n AND gates with bit shift. The XOR determines symmetric difference and stores the results in the
same significant bit. The AND gates provide the intersection, and the bit shift represents the rule 2k+2k = 2k+1

applied to the objects of the intersection. Additionally, a Zero Flag “Z” checks for the stopping condition.
Namely, that the right column, RB/RB′ is off. The Zero Flag will take the value “Z=1” if any of the outputs
from register RB/RB′ are “1”. It will take the value “Z=0” if and only if all of the outputs of register RB/RB′

are “0”. When the Zero Flag turns off, the Sum “S” is the set of signals S0, S1, S2, S3, which are output from
register RA/RA′.

[0048] A bit shift requires three iterations to complete. Multiplication by 2 is the addition s(A) = A ⊕ A =
2⊙A. Find A′ = A△A = 0 and B′ = s(A∩A) = s(A). The result is a displacement of A, one unit up, saved in reg-
ister RB′. One more iteration gives A′′ = A′△B′ = 0△s(A) = s(A) and B′′ = s(A′∩B′) = s(0∩s(A)) = s(0) = 0.
In the third and final iteration, the stopping condition is met, because register RB outputs the zero vector. The
sum is the output “S”, of register RA.

[0049] Configuration and operation of the depackaging assembly:

[0050] In an embodiment, the functioning of each individual register is explained in detail in the following
paragraphs. There is one data input “i” and one data output “o”. Additionally, two more input signals are
included. A set signal “s” to write, and an enable signal “e” to read. If “s” is a high signal “1”, the data input
“i” is stored in memory. If “e” is high, then the last input saved on memory is the data output “o” of the register.
The external view of the data latch is shown in FIG. 2. The process described here will never have “e” and “s”
on at the same time (nor will “e′” and “s′” be on at the same time). When one is on the other is off, so that the
bits will never read and write simultaneously to avoid error. Only “s,e′” are on at the same time, as are “e,s′”.
This same function can be described using different read and write processes. The first model presented here, for
illustrative purposes, is a level triggered version. A more efficient alternative is later described in this document
using dual edge triggered flip flops which require a much more simple CU.

[0051] In an embodiment, implementation of the n-bit ALU requires four n bit registers, RA,RB,RA′, RB′.
This is shown in FIG. 3. Registers are arranged so that XOR and AND gates are placed in between the two
columns of registers RA/RA′ on the left and RB/RB′ on the right. The output of the XOR gates is directed
into registers RA/RA′, while the output of the AND gates is directed into registers RB/RB′ with a bit shift.
Symmetric difference of the two columns will be saved in the left column RA/RA′, and the intersection with a
bit shift will be saved in the right column RB/RB′. For every bit of input, a subunit of two gates and four bits
of memory is required.

[0052] The data inputs “i = A0, A1, A2, A3” and “i = B0, B1, B2, B3” are only activated at the beginning of
the instruction set. At the same time, a high set signal “s” is activated. The result is that the initial state S(t0)
is stored in registers RA,RB. The Zero Flag “Z”, and Sum “S” are also shown in FIG. 3. The connections “Z”
and “S” are outputs of the registers; inputs to the CU. The Zero Flag determines if the stopping condition is met,
“Z=0”. Namely, that the output from register RB/RB′ is zero, 0000. The “S” connections coming from register
RA/RA′ will represent the resulting sum, when the stopping condition is met. A Carry Flag “CF” connection
is included.

57

[0053] The Input/Output connections and logic gates are placed on the top layer, while “Z” and “S” are on
a second layer, below the latter. This is shown in FIG. 4. In an embodiment, the set and enable connections
of FIG. 4, “s,e,s′,e′” are each on their own layer so they do not intersect with each other, nor with the top two
layers. The four layers of set and enable connections are represented by four thin lines that do not intersect. They
function in the following manner. If “s′” (write RA′, RB′) is on, then “e” (read RA,RB) is on simultaneously.
Similarly, if “e′” (read RA′, RB′) is on, then “s” (write RA,RB) is on.

[0054] A total of six layers of connections are needed. Four bottom layers for set and enable connections, and
the two top layers for “i”, “o” and “Z”, “S”. Three different line thicknesses are used in FIG. 4 to reflect this.
Thin lines are used for the set “s” and enable “e” connections and they are placed at the bottom. Thick lines are
placed on top of the four layers of thin lines and are used for “Z” and “S”. Medium thickness lines are placed at
the top layer and are used for input “i” and output “o”.

[0055] The first step in the process is to write the data input signals i = A0, B0, A1, B1, A2, B2, A3, B3 in the
registers RA0, RB0, RA1, RB1, RA2, RB2, RA3, RB3, respectively. The data connections appear at the bottom
of the Control Unit in FIG. 4. This first step is achieved by activating the data input “i” signals, along with
the set “s” signal. The input signals are on low ”0” or high “1” according to the inputs A,B being represented.
The input connections are activated only once at the beginning of the instruction set. Simultaneously, the set
signal “s” is high “1”. There is one exception. After the initial data input into RB0, the bit shift requires a “0”
input into RB′0, then it will require low “0” to be input into RB0. This continues in an alternate manner until
the stopping condition is met. This is specified in the instruction set. A “0” signal is sent to RB′0, the first
time “s′” is activated, and every iteration after that “0” is sent to RB0/RB′0 in an alternate manner as explained.

[0056] In an embodiment, the second step is to output the data signal “o” of the RA,RB registers. This is
achieved with a high enable “e” signal. The data outputs of RA,RB will go through the XOR and AND gates.
At the same time “s′” is also on, so that RA′, RB′ registers write the output of the gates. The result is that the
second state of the finite state machine is saved in the RA′, RB′ registers. The next iteration is to output the
bits stored in RA′, RB′ and write the result on the RA,RB bits. This is achieved by turning on “e′” and “s”
simultaneously. The third state of the system is stored in memory, in the RA,RB registers. Continuing in this
manner for a finite number of iterations leads to a stable state; the output of register RB/RB′ will be 0000 in a
finite number of states. The result is the Sum “S” output of register RA′.

[0057] FIG. 5 shows a flow diagram for the instruction set, where the instruction set is constant and indepen-
dent of the bit length of inputs, in accordance with some embodiments of the present disclosure. The instruction
set for the flow diagram is given below:

1. Load data inputs i = Ai, Bi to registers RAi,RBi, and activate Set “s=1”.

2. Activate Enable “e=1” and Set “s′=1”. Load data input “i=0” to RB′0 bit.

3. Read Zero Flag “Z”

If “Z=0”, Get “S”;

Else “Z=1”, Activate Enable “e′=1” and Set “s=1”. Load data input “i=0” to RB0 bit.

4. Read Zero Flag “Z”

If “Z=0”, Get “S”;

Else “Z=1”, Go to II.

These instructions can be carried out largely by Hardware. This will be explained later in the document.

[0058] An example is illustrated in the following paragraphs. Let A = 6 = 0110 and B = 3 = 0011. The
corresponding instructions are listed below:

58

I. First instruction will load inputs A = 0110 and B = 0011 to registers RA,RB. That is, RA0 = 0, RA1 =
1, RA2 = 1, RA3 = 0, and RB0 = 1, RB1 = 1, RB2 = 0, RB3 = 0.

II. Subsequent instruction will read the contents of registers RA,RB. These contents are directed to the XOR
and AND gates. The output of these is written on the RA′, RB′ registers. In our example, the outputs of
RA0, RB0 are “0,1”, respectively. These outputs will then be directed to the XOR0 gate, and input “1”
into RA′0. Simultaneously, the same “0,1” outputs, from RA0, RB0, will also be directed into the AND0
gate which will input “0” into RB′1. In an embodiment, the output of registers RA1 = 1, RB1 = 1 will
input “0” into RA′1 and “1” into RB′2, after going through gates XOR1 and AND1, respectively. The
outputs of RA2 = 1, RB2 = 0 will write “1” into RA′2 and “0” into RB′3 after passing through XOR2 and
AND2. Also, RA3 = RB3 = 0 will write “0” into RA′3. The bit-shift requires the CU to input “0” into
RB′0. While these outputs go through the gates and the results are written, the output of the RA,RB
registers will be sent to the CU in the form of “S0 = 0, S1 = 1, S2 = 1, S3 = 0” and “Z=1”, respectively.

III. The subsequent instruction will read “Z=1”. The action path is to read RA′, RB′ and write the results
on registers RA,RB. The results are RA0 = 1, RB0 = 0, RA1 = 0, RB1 = 0, RA2 = 0, RB2 = 0, RA3 =
0, RB3 = 1. Again, the bit-shift requires a “0” input into RB0. At the same time, the output of RA and
RB has been sent to the CU in the form of “S0 = 1, S1 = 0, S2 = 1, S3 = 0” and “Z=1”, respectively.

IV. The subsequent instruction will read “Z=1”. Then, go to Instruction II.

II’. Outputs the memory of RA,RB into RA′, RB′. The result will be RA′0 = 1, RA′1 = 0, RA′2 = 0, RA′3 =
1, and RB′0 = RB′1 = RB′2 = RB′3 = 0. At the same time, the output of RA and RB has been sent to
the CU in the form of “S0 = 1, S1 = 0, S2 = 0, S3 = 0” and “Z=1”, respectively.

III’. will read “Z=1”. The action path is to read RA′, RB′ and write the results in RA,RB. At the same time,
the output of RA′, RB′ is sent to the CU as “S0 = 1, S1 = 0, S2 = 0, S3 = 1” and “Z=0”, respectively.
This concludes the program, with “S” being the result of addition of the original inputs; 6 + 3 = 9.

[0059] To represent a rational approximation of a non-negative real number, a fraction of the bits is used for
the rational part and the remaining bits are used for the integer part. This gives us operation for fixed point
rational numbers. The examples given are of fixed point nature. However, this ALU architecture is compatible
with floating point representation and operations.

[0060] Negative energy levels are identified with negative powers of 2. Therefore, a set of negative integers
will give a unique number in the unit interval [0, 1]. For example, the set {−1} is the number 1

2 = 2−1. The set
representation of 3

4 = 2−1 + 2−2 is the set {−1,−2}. Consider the finite state machine of FIG. 1. Notice that
changing the labels on the energy levels gives a new expression. For example, making the bottom level equal to 3,
instead of 0. This means 3 is added to every element of a set number. Instead of 15+23 = {0, 1, 2, 3}⊕{0, 1, 2, 4},
the new addition is {0 + 3, 1 + 3, 2 + 3, 3 + 3} ⊕ {0 + 3, 1 + 3, 2 + 3, 4 + 3} = {3, 4, 5, 6} ⊕ {3, 4, 5, 7} = 120 + 184.
The new result is obtained by adding 3 to all the elements of the original result, {1+3, 2+3, 5+3} = {4, 5, 8} = 304.

[0061] In an embodiment, if the energy levels are displaced into negative integers, the results still hold a
true expression. In FIG. 6, an example of this is provided. The addition of sets with negative integers in its
elements is the same as before. The addition 1

4 + 1
4 = {−2} ⊕ {−2} is equal to 1

2 = {−1}. The set addition
is ({−2}△{−2})⊕s({−2}∩{−2}); first term is the empty set, and the second term is s({−2}) = {−2+1} = {−1}.

[0062] The circuit for adding numbers whose elements include negative integers does not require any addi-
tional components. The circuit of FIG. 4 suffices. However, to divide numbers by 2, a second bit shift is needed.
This is easily achieved by adding two enabling AND gates to each AND gate of the ALU. One gate will Enable
Multiply “EM” and the other will Enable Divide “ED”. Only one of these can be on at a time and must remain
on during the entire time of the operation. Carry flags for multiplication “MCF” and division “DCF” are also
included. This is illustrated in FIG. 7. A connection for input in RB′3 is also included for division, just as an
input connection is included for RB′0.

[0063] One more component should be included in the description of the ALU. Once an addition is performed
and new data inputs are to be loaded, the registers will be receiving signals from the CU and the XOR gates

59

because when “s” is on, so is “e′”. To solve this, an AND gate is placed after each XOR gate. This enables
the symmetric difference just as the “ED” and “EM” gates enable the intersection. These gates will be called
“EXOR”, and one of its inputs is connected to the output of its corresponding XOR gate and the other is a high
signal whenever“EM” or “ED” are a high signal. This is a viable solution because it also gives a two gate depth
to the XOR path, as in the case of the AND path. The XOR and AND paths have equal gate depth.

[0064] In an embodiment, the control logic is designed simple enough to show in a diagram. FIG. 8 is an
internal view of the Control Unit. Step I requires set connection “s” to be on. This is achieved with a high signal
in “e′/s”. Simultaneously, the data inputs are also sent to the registers. Step II Requires for “s′/e=1” to be
turned on. This will read registers RA and RB and write on registers RA′ and RB′. The output of register RB
will, at the same time, be directed to the Zero Flag “Z”. A “Switch Unit” is included to perform the following
function. The first time “Switch Unit” receives high input “Z=1”, it will output a low signal to “s′/e”. The next
time the switch unit receives a high signal “Z=1”, it will output a high signal. That high signal will go to gate
“sw” so that now a low signal is directed to “e′/s”. This continues in alternating manner so that the output of
the switch unit moves between high and low, starting with a low signal. When the switch unit receives a low
signal, there is no output because the stopping condition has been met.

[0065] In an embodiment, the control unit has an input “D/M”. If addition is to be performed, “D/M=1”
should be on. Bit shift equivalent to multiplication by 2 is performed if both inputs are equal. If the signal is low
“D/M=0”, then “ED=1” and the operation performed is division by 2 when both inputs are equal. The carry
out connections “DCF” and “MCF” are shown again. The “EXOR” signal is given by gates “B1” and “B2”; it
is on whenever “ED” or “EM” are on. A flag “F” is included for internal use of the CU. The flag is on when the
stopping condition is met; the flag turns on when “Z” turns off. It can be used to save the Sum “S” in memory
once the addition is completed. It is also used to indicate when new data inputs are loaded to the registers, and
it shuts off “ED”, “EM” and “EXOR”. The flag is also used for outputting a zero value to RB0/RB′0. In the
case of division, the bits RB3/RB′3 take their place.

[0066] In an embodiment, increasing the number of input bits increases the area linearly. This is a box-car
architecture, where adding a bit to the operands requires to add a sub unit of four bits and five logic gates in
linear manner (add a box car). A n-bit adder requires 4n many bits of registers, n many XOR gates, and 4n many
AND gates. Compared to other fast architectures, this represents a significant reduction in material resources
and area. The requirements are the same number of registers, and reduced gate count, area, and complexity.
Furthermore, the instruction set remains the same, for any number of bits.

[0067] The finite state machine is not time constant. Calculation time is constant for equal inputs, but differs
for different inputs. Let t, the time length for one iteration, then t · log2 n is the average time to complete an
addition, and the longest time is t · n. The circuit has a fixed gate depth of two logic gates, plus the lengthiest
micro steps of reading and writing memory. This allows easy calculation of the time it takes to perform one
iteration. It is equal to the sum of the two gate delays, plus the reading and writing process.

[0068] In an embodiment, the circuit is designed to have easy synchronization, independent of the choice
of logic, clock speeds and register type. Particular solutions abound and are routine. The general principal of
modeling the finite state machine through a logical circuit is being described. In terms of area, the CLA has area
of order O(n log2 n), while the area of the fast adder here proposed is of linear order O(n). The ratio of these two
orders is O(log2 n). Approximately log2 n many fast adders, of the type here proposed, may fit in the same space
of one CLA of equal bits, as n gets bigger. Also, CLA performs in one clock cycle, while the proposed adder
considers a positive number of iterations, on average log2 n many iterations. It is concluded that performance is
expected to be comparable in terms of area and speed, as the number of bits, n, and the number of operations
performed, grow. This is true if the clock cycles of the compared adders are of equal time length. It must be
considered that the clock cycles for the proposed adder will be shorter because the gate depth is a small constant
and instructions are constant. This effect will potentially give better performance than other fast parallel adders.
This design is likely to operate at higher than conventional clock speeds. If the memory writing process can be
sped up, then the whole process will have a compounded reduction of time, and possibly outperform other fast
adders, bit for bit.

60

[0069] Another advantage of the present invention would be power consumption, because the control logic
and gate depths are a small constant number. The design can be adapted to specific applications such as general
purpose, graphics, scientific, etc.

[0070] A second example is provided, illustrating the internal process of the adder and the control unit. This
example will illustrate a bit shift to the right, which is equivalent to division by 2. In this case, let A = B = 0111.
The result of the operation is A+B = 0011, and the carry flag “DCF” will be activated in the process. Load the
data inputs; the set connection “s” is set to high. Simultaneously, the data inputs of A and B are activated. On
every iteration that follows, the “D/M” input in the CU will be set to low so that the division gates “ED0-ED3”
are enabled in the ALU. Thus, bits are carried to the right, not the left. Next, the “s′/e” input of the CU is
turned on. This will enable reading of the RA,RB registers, and writing on RA′, RB′ registers. Specifically,
registers RA0 = 1, RB0 = 1 will both input a high signal to gate “AND0”, turning it on. Therefore, gate “ED0”
will be turned on and it will be sending a signal to the division carry flag “DCF”. This will simply indicate that
a carry over to the right is taking place in the first bit. At the same time, the corresponding process takes place
for the other bits. registers RA1 = 1 and RB1 = 1 turn gate “AND1” on. This turns gate “ED1” on, sending
a high signal to register RB′0. A similar situation happens with the next bit, RA2 = RB2 = 1. These send a
high signal to RB′1. The last bit, RA3 = RB3 = 0 will send a low signal to RB′2. Also, a low signal is sent to
RB′3 as part of the instruction set. At the end of this process the configuration of the registers is RA′ = 0000
and RB′ = 0011. While this is taking place, the outputs of register RA are also sent to the Zero Flag. Since at
least one of these bits is on, “Z” is on.

[0071] The high signal of “Z” will go into the switch unit which will output a low signal, initiating the second
iteration. Registers RA′ = 0000, and RB′ = 0011 are read and then pushed through the XOR and AND gates.
The output of the gates is written on registers RA = 0011, and RB = 0000, respectively. The output of the Zero
Flag is “1”, so a high signal goes into the switch unit which will output a high signal. This will read registers
RA and RB. The output of register RB is the zero vector, so that the output of the zero flag is a low signal
“Z=0”. This signals RA to be saved in memory or operate where it is needed. At the same time, it will signal for
the “ED”, “EM”, and “EXOR” to be off in the next clock cycle so that new data can be input to the registers
without error. This example suggests that it could be convenient to have a Zero Flag for register RA, also. This
last implementation would subtract one iteration from the bit shift.

[0072] Two sets of registers RA,RB,RA′, RB′ were used because of the racing problem. The outputs of the
XOR and AND gates are looped back to the registers. That is why a rudimentary master-slave solution has been
illustrated. However, that solution is not the most efficient. An alternative solution is presented. A variation of
the proposed ALU can be implemented using edge triggered registers. If the registers are replaced for memory
bits capable of handling inputs/outputs independently and without error of feedback, then the number of memory
registers is reduced. A total of two n bit registers will suffice. Edge triggered registers offer a solution. A register
with three connections is used: clock “CLK”, input “D”, and output “Q”. Each register will have to read on the
positive edge and write on the negative edge of the clock cycle. This is shown in FIG. 9. Enable divide, enable
multiply, and enable EXOR gates are not shown.

[0073] A three operand version is possible and comparable to Carry Save Adder. The proposed unit should
yield better performance when adding positive numbers. The expected sign difficulties of CSA are still present
for signed operations of three operands. A comparison is given between the gate topology for a two operand
unit in FIG. 10, and a three operand unit in FIG.11. This is not the same multi-operand principle of connecting
parallel SLFAs in a rectangular grid defined in section 2. They are two distinct methods based on the same
arithmetic principles .

[0074] In an embodiment, FIG. 10 shows the basic sub unit that allows for the iterative process on one-bit.
It consists of a half adder where the output of AND is connected to the register RB(i+ 1) of the next bit, rep-
resenting the new configuration in the right column of the finite state machine. The output of XOR is directed
back to the RAi register of the same bit, representing the left column.

61

[0075] FIG. 11 is an adaptation of the adder, for three inputs. First, there are XOR and AND gates “2” and
“3”. When all three inputs A,B,C are a high signal, then gates “2” and “3” both output a high signal so that
the output of gate “4” is a high signal. This amounts to a high signal being sent to the RB register of the next
bit. That is, a carry over. Simultaneously, a high signal is sent back to the RA register of the same bit. A unit
remains in the same bit. The case when all the inputs of a bit are “1” result in a carry over and unit in the same
bit. This is the only case in which gate “4” is on, so no more attention is paid to it.

[0076] In an embodiment, if only two of the three inputs are a high signal, then gates “2” and “3” will both
be off. Specifically, the fact that gate “3” is off, implies that gate “5” is on. Simultaneously, two of the three
gates “6, 7, 8” are on. This means gate ”9” is receiving two high signals, so that its output is a high signal “1”.
There is a carry over and no unit remains in that bit. The next case is when only one of three inputs is on. Gate
“2” is off, and gate “3” is on; a unit remains in that bit, and no carry over is generated.

[0077] In an embodiment, if all inputs are off then gate “5” will be on, but gates “6, 7, 8” will be off so that
gate “9” is also off. No carry overtakes place and there is no unit remaining, all cases have now been covered.
The circuit whose elements are gates “2-9” is a one bit adder for three operands. Several bits are connected in
series, to iterate until the system stabilizes. The control logic will remain the same.

[0078] The terms “an embodiment”, “embodiment”, “embodiments”, “the embodiment”, “the embodiments”,
“one or more embodiments”, “some embodiments”, and “one embodiment” mean “one or more (but not all) em-
bodiments of the invention(s)” unless expressly specified otherwise.

[0079] The terms “including”, “comprising”, “having” and variations thereof mean “including but not limited
to”, unless expressly specified otherwise.

[0080] The enumerated listing of items does not imply that any or all the items are mutually exclusive, unless
expressly specified otherwise. The terms “a”, “an” and “the” mean “one or more”, unless expressly specified
otherwise.

[0081] While various aspects and embodiments have been disclosed herein, other aspects and embodiments
will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for pur-
poses of illustration and are not intended to be limiting, with the true spirit being indicated by the following
claims.

WHAT IS CLAIMED IS:

1. A linear fast adder for an Arithmetic Logic Unit (ALU), the adder comprising:

a) a four-bit adder component comprising a plurality of logic gates comprising at least sixteen AND
gates, four XOR gates; and

b) a plurality of one-bit registers; wherein the four-bit adder is configured with a linear area, linear
complexity and a logarithmic delay; and wherein the four-bit adder has a constant gate depth thereby
resulting in constant power dissipation.

2. The linear fast adder of claim 1, wherein the four-bit adder component is configured to support a plurality
of operands for integer type data and rational approximations to real number type data.

3. The linear fast adder of claim 1, wherein the four-bit adder component is configured to perform operations
comprising at least one of left shift operation, right shift operation, addition, signed operations and one or
more derived operations.

4. The linear fast adder of claim 3, wherein performing the operations comprises: representing the numbers
in a binary form in corresponding set of natural numbers, such that each number is a set of smaller natural

62

numbers, wherein elements of the set of smaller numbers are denoted in powers of 2 in a binary represen-
tation.

5. The linear fast adder of claim 1 further comprises determining a symmetric difference corresponding to the
operations performed at the four-bit adder component, the determining comprising:

a) saving an initial state of the operations in at least one one-bit registers in the four- bit adder component;

b) directing output of each of the one-bit registers in two disjoint paths; and

c) computing the symmetric difference and intersection in the output of each of the one-bit registers.

6. The linear fast adder of claim 5, wherein the bit configurations saved in the one-bit registers is passed
through at least one XOR gate in the four-bit adder component for yielding the symmetric difference.

7. The linear fast adder of claim 5, wherein the bit configurations saved in the one-bit registers is passed
through at least one AND gate in the four-bit adder component for determining an intersection in the
output.

8. The linear fast adder of claim 1, wherein to represent a rational approximation of non- negative real num-
ber, a fraction of the bits is used for the rational part and the remaining bits are used for the integer part.

9. The linear fast adder of claim 1, wherein adding a single bit to the operands requires adding of a sub-unit
of four bits and five logic gates in a linear manner to the four-bit adder component.

10. The linear fast adder of claim 1, wherein the time taken by the linear fast adder is equal to sum of the two
gate delays, and the reading and writing process.

11. The linear fast adder of claim 1, wherein clock cycles for the linear fast adder remains shorter depending on
the gate depth and constant instructions, such that an increase in speed of memory writing process results
in a compounded reduction of time.

12. The linear fast adder of claim 1, wherein an instruction set associated with the linear fast adder is constant
and is independent of the number of bits of input provided to the linear fast adder.

13. The linear fast adder of claim 1, wherein the operation of the linear fast adder is controlled based on an
arithmetic model that defines addition operations in terms of a finite state machine.

14. The linear fast adder of claim 13, wherein each state of the finite state machine comprises two columns and
each column represents a finite configuration of energy levels representing one natural number.

15. The linear fast adder of claim 14, wherein in a subsequent set of the finite state machine, the finite
configuration on a left column of the two columns represents the energy levels that are not repeated in the
preceding state and the finite configuration on a right column of the two columns represents objects that
are repeated from the preceding state.

63

FIG. 1

FIG. 2

64

FIG. 3

65

FIG. 4
66

FIG. 5

FIG. 6

67

FIG. 7
68

FIG. 8

69

FIG. 9

70

FIG. 10

FIG. 11

71

B Canonical Block Forms

Examples are given, to illustrate the procedure for finding all groups of n elements along with their automor-
phisms. The canonical block form of the symmetry group ∆4 is provided along with its automorphisms.

B.1 |G| = 5

If G is a group with five objects, then all non trivial objects satisfy |g| 5. This implies |g| = 5, for all non trivial
g ∈ G. Without loss of generality, choose any object g1. Then, g21 is a non trivial object, g2. Also, g1 ∗ g2 = g31
is a new non trivial object, g3, etc.

e g1 g2 g3 g4
g1 g2
g2 g3
g3 g4
g4 e

Now, use the associative property to find the operation function of g2, and it will be placed in the second
column. It is true g2 = g1 ∗ g1, so that it must also be true that ∗g2 = ∗g1 ◦ ∗g1. This means ∗g2(g1) is found by
g1 →∗g1 g2 →∗g1 g3. Also, ∗g2(∗g2) because g2 →∗g1 g3 →∗g1 g4, etc.

e g1 g2 g3 g4
g1 g2 g3
g2 g3 g4
g3 g4 g5
g4 e g1

Do the same with the column of g3 = g1 ∗ g2 and g4 = g1 ∗ g3, so that ∗g3 = ∗g1 ◦ ∗g2 and ∗g4 = ∗g1 ◦ ∗g3.
For example, g3 ∗ g1 = ∗g3(g1) is given by the arrows g1 →∗g2 g3 →∗g1 g4, etc.

e g1 g2 g3 g4
g1 g2 g3 g4 e
g2 g3 g4 e g1
g3 g4 e g1 g2
g4 e g1 g2 g3

The group is defined by the number of objects, so that there exists only one group, Z5, of five objects. To
find the canonical naming functions, make e = 4 and a = 3 for some object a ∈ Z5 such that |a| = 5. However,
all non trivial objects have order 5, so that a can be any non trivial object. To maximize the representation, the
object b = a2 has to be assigned the numerical value 2.

4 3 2 1 0
3 2
2
1
0

The new object c = a ∗ b = a3 is assigned value 1, and d = a4 is assigned value 0.

4 3 2 1 0
3 2
2 1
1 0
0 4

The rest of the table can be found, using the associative property.

4 3 2 1 0
3 2 1 0 4
2 1 0 4 3
1 0 4 3 2
0 4 3 2 1

72

This numerical table is given by four different naming functions. Consider the naming function that has e = 4
and g4 = 3. Then g24 = g3 = 2, and g34 = g2 = 1, and g44 = g1 = 0. This naming functions is represented by the
sequence (e, g4, g3, g2, g1). The four canonical naming functions are

(e, g1, g2, g3, g4)
(e, g2, g4, g1, g3)
(e, g3, g1, g4, g2)
(e, g4, g3, g2, g1).

These four canonical naming functions are actually the automorphisms of Z5, in disguise. Fix any one of these
naming functions, say A = (e, g3, g1, g4, g2). Let B any other canonical naming function, say B = (e, g2, g4, g1, g3).
The bijective function defined below is an automorphism.

e 7→ e
g1 7→ g4
g2 7→ g3
g3 7→ g2
g4 7→ g1

Let B any other canonical naming functions, say B = (e, g4, g3, g2, g1). A second automorphism has been
determined,

e 7→ e
g1 7→ g3
g2 7→ g1
g3 7→ g4
g4 7→ g2.

Four automorphisms of Z5 are determined using the four canonical naming functions. The canonical repre-

sentation is

NZ5 = 22
9+2

2

(
2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1

)
+ 22

7+2
2

(
2(2

9+28)+2(2
7+26)+2(2

5+24)+2(2
3+22)+2(2

1+210)+1

)

+22
5+2

2

(
2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+210)+2(2

1+28)+1

)
+ 22

3+2
2

(
2(2

9+24)+2(2
7+22)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1

)

+22
1+2

2

(
2(2

9+22)+2(2
7+210)+2(2

5+28)+2(2
3+26)+2(2

1+24)+1

)
.

B.2 |G| = 6

Dihedral Group D6. Begin as usual, with the list of objects.

e g1 g2 g3 g4 g5
g1
g2
g3
g4
g5

There exists at least one element of order equal to the smallest prime divisor of 6; there is at least one object
of order 2. Since 3 is a prime divisor of 6, the group has at least one object of order 3, as well. In fact, there
has to be a multiple of ϕ(3) = 2 many objects of order 3. Therefore, any group of six objects will have either
two, or four, objects of order 3. First, consider the case with two objects of order 3, and three objects of order

73

2. Suppose, without loss of generality, g21 = g2 and g1 ∗ g2 = e.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 e
g4 e
g5 e

The object g1 ∗ g3 is a new object, g4, and the column of g1 is determined. Then, find the column of g2 by
means of the composition ∗g1 ◦ ∗g1.

e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 e
g5 g3 g4 e

Then, use |g3| = 2 to find
e g1 g2 g3 g4 g5
g1 g2 e
g2 e g1
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

.

Use |g3| = 2 again, now to find
e g1 g2 g3 g4 g5
g1 g2 e g5
g2 e g1 g4
g3 g4 g5 e
g4 g5 g3 g2
g5 g3 g4 g1

.

It is trivial to find the columns of g4, g5 in terms of the rest of the columns, using associativity as usual.

e g1 g2 g3 g4 g5
g1 g2 e g5 g3 g4
g2 e g1 g4 g5 g3
g3 g4 g5 e g1 g2
g4 g5 g3 g2 e g1
g5 g3 g4 g1 g2 e

(14)

This is the dihedral group D6. It is determined by the equations

g21 = g2

g1 ∗ g2 = g23 = g24 = g25 = e.

Letters a, b, c, . . . and x1, x2, x3, . . . are auxiliary variables in finding the canonical naming of groups. The first
numerical value assigned is e = 5. Recall, the strategy is to assign the larger numbers first, by giving priority to
the left-most columns. Within a column, priority is given to the objects of upper rows. Observe there are three
objects of second order. One of these three objects, call it a, will be assigned the value 4. Then, whatever object
may be chosen for b, there is a fourth object a ∗ b = x1. And, since |a| = 2 it is also true a ∗ x1 = b.

e a b x1

a e
b x1

x1 b

74

To maximize the representation, name b = 3 and a ∗ b = x1 = 2. That yields the numeric table

5 4 3 2
4 5
3 2
2 3

.

So far, the only thing known about the canonical naming functions, is that a = 4 is one of the second order
objects. If there were an object that commutes with a, it would be used as the object b. But, from (14) it is clear
there is no choice of b that commutes with a. That is to say, the second order objects of D6 do not commute
with any non trivial object. Therefore, new objects c = b ∗ a and x2 = a ∗ c, are added to the table as shown
below

e a b x1 c x2

a e c
b x1

x1 b
c x2

x2 c

.

Make |b| = 2, to maximize the representation. Now it is known a canonical naming function of this group
must have a = 4 and b = 3 for two second order objects a, b. Also make c = 1 and x2 = 0, to maximize
the representation. Use |b| = 2 to find the rest of the column of b. The rest of the table is determined using
associativity.

5 4 3 2 1 0
4 5 1 0 3 2
3 2 5 4 0 1
2 3 0 1 5 4
1 0 4 5 2 3
0 1 2 3 4 5

To obtain a canonical naming function make a = 4, b = 3 for two objects of order 2. Obviously, g3, g4, g5
are equivalent objects; two of these have to be chosen to take the values of 4 and 3. This implies g3, g4, g5 are
equivalent. The object a ∗ b is assigned the value x1 = 2. Then b ∗ a = c = 1 and a ∗ c = x2 = 0. The objects
g2, g3 are equivalent. There is a total of six possible canonical naming functions.

(e, g3, g4, g2, g1, g5) (e, g4, g3, g1, g2, g5) (e, g5, g3, g2, g1, g4)
(e, g3, g5, g1, g2, g4) (e, g4, g5, g2, g1, g3) (e, g5, g4, g1, g2, g3)

The group has a total of six automorphisms, given by the six canonical naming functions. The group is shown
in block form, but the blocks are not cosets of a normal subgroup (even though D6 has a normal subgroup). The
canonical block form is composed of four 3× 3 blocks, and there are two types of blocks. The first type of block
has objects in A = {1, 2, 3, 4, 5} while the second type of block has objects in B = {0, 1, 2, 3, 4}. Blocks A1 and
A2 are located in the upper left corner and lower right corner, respectively. Blocks B1 and B2 are in the upper
right hand and lower left hand, respectively. This group has canonical representation

ND6 = 22
11+2

2

(
2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
9+2

2

(
2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
7+2

2

(
2(2

11+28)+2(2
9+24)+2(2

7+212)+2(2
5+22)+2(2

3+210)+2(2
1+26)+1

)

+22
5+2

2

(
2(2

11+26)+2(2
9+22)+2(2

7+210)+2(2
5+24)+2(2

3+212)+2(2
1+28)+1

)

+22
3+2

2

(
2(2

11+24)+2(2
9+28)+2(2

7+22)+2(2
5+212)+2(2

3+26)+2(2
1+210)+1

)

+22
1+2

2

(
2(2

11+22)+2(2
9+26)+2(2

7+24)+2(2
5+210)+2(2

3+28)+2(2
1+212)+1

)
.

75

Cyclic Group Z6. Now consider the case with four objects of order 4, and one object of order 2.

e g1 g2 g3 g4 g5
g1 e
g2 g3 e
g3 e g2
g4
g5

Without loss of generality, make g1 ∗ g2 = g4.

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4
g5

Using |g1| = 2, one finds
e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e
g3 g5 e g2
g4 g2
g5 g3

.

Now use |g2| = |g3| = 3 to find
e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2
g5 g3

.

It is the case that |g4| = |g5| ≠ 2, so the only option is g24 = g3 and g25 = g2.

e g1 g2 g3 g4 g5
g1 e
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g3
g5 g3 g2

It is easy to see that |g4| = |g5| = 6. It is concluded there is no group |G| = 4 with four objects of order 2.
The table is determined and the cyclic group is obtained.

e g1 g2 g3 g4 g5
g1 e g4 g5 g2 g3
g2 g4 g3 e g5 g1
g3 g5 e g2 g1 g4
g4 g2 g5 g1 g3 e
g5 g3 g1 g4 e g2

(15)

The cyclic group Z6 is determined by |G| = 6 and

g21 = e

g22 = g23 = g4

g1 ∗ g2 = g3

g24 = g2.

76

To find the canonical naming functions, use a, b, c, . . . and x1, x2, x3, . . . as auxiliary variables. Start naming
e = 5. There is only one second order object, so g1 = a = 4. Add an object b ̸= g1. Whatever object is chosen
for b, there is another object a ∗ b = x1. The group is commutative, so b ∗ a = x1. Since |a| = 2, it can be verified
that a ∗ x1 = b. Commutativity gives x1 ∗ a = b.

e a b x1

a e x1 b
b x1

x1 b

In order to maximize the representation, name b = 3 and a ∗ b = x1 = 2. But, it is still not known what
object of the group will be assigned to b = 3. The possible naming functions are

(e, g1, g2, g4, g3, g5) (e, g1, g3, g5, g2, g4) (e, g1, g4, g2, g3, g5) (e, g1, g5, g3, g2, g4)
(e, g1, g2, g4, g5, g3) (e, g1, g3, g5, g4, g2) (e, g1, g4, g2, g5, g3) (e, g1, g5, g3, g4, g2).

Whatever object b may be, b2 is a new object c. Then, the operation a ∗ c is a new object x2. Consequently,
b ∗ x1 = x1 ∗ b = x2 and x2

1 = c. To maximize the representation, make c = 1 and x2 = 0.

e a b x1 c x2

a e x1 b x2 c
b x1 c x2

x1 b x2 c
c x2

x2 c

Some of the naming functions can be eliminated. Keep only those such that the square of the third component
is equal to the fifth component (b2 = c). Notice, only the objects g2, g3 are the square of some other object. The
naming functions that satisfy these conditions are reduced to four.

(e, g1, g2, g4, g3, g5)
(e, g1, g3, g5, g2, g4)
(e, g1, g4, g2, g3, g5)
(e, g1, g5, g3, g2, g4)

Any of the naming functions above, gives the table below.

e a b x1 c x2

a e x1 b x2 c
b x1 c x2

x1 b x2 c
c x2

x2 c

No more operations can be determined with the information available. A choice must be made for b, c, so
that b ∗ c = e or b ∗ c = a. Choosing them so b ∗ c = e maximizes the representation. The four candidate
naming functions above satisfy this condition, so the candidate naming functions have not been reduced by this.
However, the table is now

e a b x1 c x2

a e x1 b x2 c
b x1 c x2 e a
x1 b x2 c a e
c x2 e a
x2 c a e

.

Next, focus on c2. Notice that two of the four naming functions satisfy c2 = x1. The other two naming
functions satisfy c2 = b. The latter two maximize the representation. The two canonical naming functions

77

are (e, g1, g2, g4, g3, g5) and (e, g1, g3, g5, g2, g4). The cyclic group Z6 has a total of two automorphisms. Take
A = (e, g1, g3, g5, g2, g4). The non trivial automorphism is the function ϕ with components e 7→ e, g1 7→ g1,
g2 7→ g3, g3 7→ g2, g4 7→ g5, g5 7→ g4. Taking A = (e, g1, g2, g4, g3, g5) and B = (e, g1, g3, g5, g2, g4), gives the same
non trivial automorphism ϕ. The numeric table givrn by these naming functions is

5 4 3 2 1 0
4 5 2 3 0 1
3 2 1 0 5 4
2 3 0 1 4 5
1 0 5 4 3 2
0 1 4 5 2 3

.

The 2× 2 block on the upper left hand corner is the normal subgroup N = Z2. The table is made up of nine
2 × 2 blocks that are the cosets N , bN and b2N , for b ∈ {g2, g3}. These coset blocks form the group Z3. The
canonical table above is written as

N bN b2N
bN b2N N
b2N N bN

.

The canonical naming table gives the additional information that Z6/Z2 = Z3. The canonical representation

of the cyclic group is

NZ6 = 22
11+2

2

(
2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
9+2

2

(
2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
7+2

2

(
2(2

11+28)+2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+212)+2(2
1+210)+1

)

+22
5+2

2

(
2(2

11+26)+2(2
9+28)+2(2

7+22)+2(2
5+24)+2(2

3+210)+2(2
1+212)+1

)

+22
3+2

2

(
2(2

11+24)+2(2
9+22)+2(2

7+212)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+22
1+2

2

(
2(2

11+22)+2(2
9+24)+2(2

7+210)+2(2
5+212)+2(2

3+26)+2(2
1+28)+1

)
.

Up to this point, there has not been any difficulty in finding the canonical naming and representation of
groups. The first groups are ordered

G0 = Z1

G1 = Z2

G2 = Z3

G3 = Z4

G4 = Z2 ⊕ Z2

G5 = Z5

G6 = Z6

G7 = D6.

The first step in finding the canonical naming function is to identify the objects of smallest order. By now it
is easy to find the canonical table and representation of Z7 (see Z5). This is the next group in order, G8 = Z7.

B.3 |G| = 8

To find groups of eight objects, observe the possible orders of the objects are the divisors of 8. Particularly, there
exists at least one object of order 2. There can be a multiple of two, 2i, objects of order 4, and a multiple of four,

78

4j, many objects of order 8. All four groups of eight objects will be found. Each group has a canonical naming
function, obtained from the numeric table, a minimal independent set of equations that defines the group, and
canonical representation. Then, the canonical representations of these groups are compared to find the order
G9 < G10 < G11 < G12 < G13.

Direct Product Z2 ⊕ Z2 ⊕ Z2. Take the simplest case first, and then it will be clear how things can be
complicated little by little. The simplest case is to consider all objects of order 2 (make i = j = 0). Additionally,
suppose the group is commutative. With maximization in mind, this gives the table

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1
g3 g2 g1 e
g4 g5 e g1
g5 g4 g1 e
g6 g7 e g1
g7 g6 g1 e

.

It is easy to see g2∗g4 /∈ {e, g1, g2, g3, g4, g5}. Suppose, without loss of generality, g2∗g4 = g6. This determines
the rest of the column of g2. Then, use g2 ∗ g4 = g4 ∗ g2 and g2 ∗ g6 = g6 ∗ g2 to find the third row. Then it is
possible to find the fourth column and fourth row, using the associative property. For example, use g6 ∗ g2 = g4
to find g4 ∗ g3 = g6 ∗ (g2 ∗ g3) = g6 ∗ g1 = g7. Finally, use g3 ∗ g5 = g6 to find g6 ∗ g4 = g3 ∗ (g5 ∗ g4) = g3 ∗ g1 = g2.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 e g1 g6 g7 g4 g5
g3 g2 g1 e g7 g6 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g4 g5 g2 g3 e g1
g7 g6 g5 g4 g3 g2 g1 e

(16)

This determines the group Z3
2 = Z2 ⊕ Z2 ⊕ Z2. This group table is already in canonical block form. Again,

the special block form of cosets of N1 = Z2 is seen. The expression Z8/N = Z4 is given in the table, because
there are sixteen 2× 2 blocks, N1, g2N1, g4N1, g6N1, that form Z4.

N1 g2N1 g4N1 g6N1

g2N1 N1 g6N1 g4N1

g4N1 g6N1 N1 g2N1

g6N1 g4N1 g2N1 N1

The group Z4 has normal subgroup N2 = Z2, and Z4/Z2 = Z2. A third expression of group quotients can be
observed. Table (16) also gives the expression Z8/Z4 = Z2 because there are four 4× 4 blocks forming the group
Z2; these blocks are the cosets of N3 = Z4,

N3 cN3

cN3 N3
.

To determine this group, seven objects of order 2 are required. Additionally, a commutative object, g1, is
needed. The following equations determine the group.

e = g21 = g22 = g23 = g24 = g25 = g26 = g27

g1 ∗ g = g ∗ g1, g ∈ Z3
2.

There is a total of one hundred and sixty eight distinct automorphisms of Z3
2, given by the canonical naming

functions. Assign e = 7 for the identity element, and a = 6 for any non trivial element of the group. Then, assign
b = 5 to a second non trivial element. To maximize representation, assign a ∗ b = x1 = 4. Next, choose a third

79

object to assign to c = 3, and a ∗ c = x2 = 2.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 e a
x2 c a e
d x3 e a
x3 d a e

Finally, make b ∗ c = d = 1 and a ∗ d = x3 = 0. This determines the rest of the table. The first object, a,
is chosen from seven different possible choices. The object b is chosen from a total of six options. Finally, c is
taken from a total of four different options. The numeric table, given by these canonical naming functions is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 5 4 7 6
0 1 2 3 4 5 6 7

and the canonical representation is

NZ3
2

= 22
15+2

2

(
2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
13+2

2

(
2(2

15+214)+2(2
13+216)+2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
11+2

2

(
2(2

15+212)+2(2
13+210)+2(2

11+216)+2(2
9+214)+2(2

7+24)+2(2
5+22)+2(2

3+28)+2(2
1+26)+1

)

+22
9+2

2

(
2(2

15+210)+2(2
13+212)+2(2

11+214)+2(2
9+216)+2(2

7+22)+2(2
5+24)+2(2

3+26)+2(2
1+28)+1

)

+22
7+2

2

(
2(2

15+28)+2(2
13+26)+2(2

11+24)+2(2
9+22)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+22
5+2

2

(
2(2

15+26)+2(2
13+28)+2(2

11+22)+2(2
9+24)+2(2

7+214)+2(2
5+216)+2(2

3+210)+2(2
1+212)+1

)

+22
3+2

2

(
2(2

15+24)+2(2
13+22)+2(2

11+28)+2(2
9+26)+2(2

7+212)+2(2
5+210)+2(2

3+216)+2(2
1+214)+1

)

+22
1+2

2

(
2(2

15+22)+2(2
13+24)+2(2

11+26)+2(2
9+28)+2(2

7+210)+2(2
5+212)+2(2

3+214)+2(2
1+216)+1

)
.

A non abelian group with all objects of order 2 does not exist. If c ∗ a = d, then d ∗ a = c because |a| = 2.
Since |d| = 2 it is also true d ∗ c = a. On the other hand, a ∗ c = x2 and |c| = 2 imply x2 ∗ c = a. This is a
contradiction with the definition of group.

e a b x1 c x2 d x3

a e x1 b d x3 c x2

b x1 e a
x1 b a e
c x2 e a a
x2 c e
d x3 e
x3 d e

80

The contradiction does not depend on the first four objects e, a, b, x1. This means that any non abelian group
of eight objects, must also have objects of order 4 or 8. In particular, the group Z3

2, above, is the only group
of eight objects with all non trivial elements of order 2. The commutative condition determined the group.
Commutativity of one non trivial element implies commutativity on all the elements of the group.

Dihedral Group D8. Now consider groups with elements of orders 2 and 4. Only a multiple of 2 = ϕ(4),
many objects of order 4 are possible. First, consider the case with two objects of order 4, and five objects of
second order. Let a, b, x1, c, x2 be the objects of order 2, and let d, x3 the objects of order 4.

e a b x1 c x2 d x3

a e
b x1 e
x1 b e
c x2 e
x2 c e
d x3 a e
x3 d e a

Since |b| = |x1| = |c| = |x2| = 2, then x1 ∗ b = b ∗ x1 = x2 ∗ c = c ∗ x2 = a.

e a b x1 c x2 d x3

a e
b x1 e a
x1 b a e
c x2 e a
x2 c a e
d x3 a e
x3 d e a

Now, |b| = |x1| = |c| = |x2| = 2 implies b ∗ a = x1, x1 ∗ a = b, c ∗ a = x2, x2 ∗ a = c, respectively. Then,
d ∗ a = x3 and x3 ∗ a = d. Notice a block form is starting to appear in the table for K(4). There are 2× 2 blocks
forming the Klein group. Suppose, without loss of generality, b ∗ c = d.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a
x2 c x3 d a e
d x3 a e
x3 d e a

The rest of the table is determined. Find b ∗ d = c, and d ∗ c = b.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 a e
x3 d x2 c e a

81

Next use c = b ∗ d to find c ∗ d = b ∗ (d ∗ d) = b ∗ a = x1.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

The rest of the table is determined similarly. For example, |c| = 2 implies c ∗ b = x3.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a x3 d c x2

x1 b a e d x3 x2 c
c x2 d x3 e a b x1

x2 c x3 d a e x1 b
d x3 c x2 x1 b a e
x3 d x2 c b x1 e a

This is the Dihedral group, D8, defined by |G| = 8 and the set of equations

e = a2 = b2 = x2
1 = c2 = x2

2

d2 = a.

It is the only group |G| = 8, with exactly two objects of order 4, and five objects of order 2. Notice that the
set of equations only mentions seven different objects. The eighth object is a ∗ d, and it is of order 4. To find the
canonical naming function of this group, write the group with non generic symbols.

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 e g1 g2 g3
g5 g4 g7 g6 g1 e g3 g2
g6 g7 g5 g4 g3 g2 e g1
g7 g6 g4 g5 g2 g3 g1 e

(17)

Now, use the letters a, b, . . . , x1, x2, . . . as auxiliary variables to find the canonical naming. Avoid confusion
with the fact that the same symbols a, b, . . . , x1, x2, . . . have just been used as auxiliary variables to find the
group. Table (17) will be the reference for D8. Start with e = 7, and an arbitrary object, a = 6, of order 2. Add
an object b = 5. To maximize the representation, make x1 = a ∗ b = b ∗ a = 4. Put simply, one must choose
two objects, a, b, that satisfy e = a2 and a ∗ b = b ∗ a. There are ten options of ordered pairs of D8 that satisfy
these relations. For example, g7 is a second order object and it commutes with g6. Also, g1 is a second order
object and it commutes with g2. Furthermore, an element b can be found such that |b| = 2, maximizing the
representation. There are six options to do this. The objects g4, g5 commute, as do g6, g7 and they are all second
order objects. Also, notice g1 commutes with each of them. Therefore, any of these objects can take the place
of a, for now. Add another object to the table, say c = 3, and consequently x2 = a ∗ c = 2. Then, add another

82

object d = 1, for the product b ∗ c = d, and x3 = a ∗ d = 0.

e a b x1 c x2 d x3

a e x1 b
b x1 e a
x1 b a e
c x2 d x3

x2 c x3 d
d x3 c x2

x3 d x2 c

In order to maximize the representation, find c that commutes with a. This implies a also commutes with
x2 = a ∗ c. The only object that commutes with at least four objects is g1. Therefore, a = g1. The possible
canonical naming functions have been reduced to a total of sixteen possible naming functions. Choose b from
four different objects, {g4, g5, g6, g7}, and then c can be chosen from four different objects.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a
x1 b a e
c x2 d x3

x2 c x3 d
d x3 c x2

x3 d x2 c

None of the choices of naming functions will have b ∗ c = c ∗ b. This is because the four options for assigning
b, which are g4, g5, g6, g7, only commute with g1 and a ∗ b = x1. For example, g4 only commutes with g1 and
g5 = g1 ∗ g4, etc. So far, the canonical block form is

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3

c x2 d x3

x2 c x3 d
d x3 c x2

x3 d x2 c

Notice that in eight of the sixteen possible naming functions, there are eight that satisfy c2 = e. The other
eight functions assign c to g2 or g3. To maximize the representation choose the first eight naming functions;
assign c to a second order object.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a x3 d
x1 b a e d x3

c x2 d x3 e a
x2 c x3 d a e
d x3

x3 d

The rest of the table is determined. There is a total of eight canonical naming functions. Choose b from the
list {g4, g5, g6, g7}, and make x1 = g1 ∗ b. Then choose c from the remaining two objects of that list. The objects
g4, g5 are equivalent, and g6, g7 are equivalent. The order 4 objects g2, g3 are equivalent. The canonical naming
functions are

(e, g1, g4, g5, g6, g7, g3, g2) (e, g1, g5, g4, g6, g7, g2, g3) (e, g1, g6, g7, g4, g5, g2, g3) (e, g1, g7, g6, g4, g5, g3, g2)
(e, g1, g4, g5, g7, g6, g2, g3) (e, g1, g5, g4, g7, g6, g3, g2) (e, g1, g6, g7, g5, g4, g3, g2) (e, g1, g7, g6, g5, g4, g2, g3)

83

The numeric table is
7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 0 1 2 3
4 5 6 7 1 0 3 2
3 2 1 0 7 6 5 4
2 3 0 1 6 7 4 5
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

and the canonical representation is

ND8 = 22
15+2

2

(
2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
13+2

2

(
2(2

15+214)+2(2
13+216)+2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
11+2

2

(
2(2

15+212)+2(2
13+210)+2(2

11+216)+2(2
9+214)+2(2

7+24)+2(2
5+22)+2(2

3+28)+2(2
1+26)+1

)

+22
9+2

2

(
2(2

15+210)+2(2
13+212)+2(2

11+214)+2(2
9+216)+2(2

7+22)+2(2
5+24)+2(2

3+26)+2(2
1+28)+1

)

+22
7+2

2

(
2(2

15+28)+2(2
13+26)+2(2

11+22)+2(2
9+24)+2(2

7+216)+2(2
5+214)+2(2

3+210)+2(2
1+212)+1

)

+22
5+2

2

(
2(2

15+26)+2(2
13+28)+2(2

11+24)+2(2
9+22)+2(2

7+214)+2(2
5+216)+2(2

3+212)+2(2
1+210)+1

)

+22
3+2

2

(
2(2

15+24)+2(2
13+22)+2(2

11+26)+2(2
9+28)+2(2

7+212)+2(2
5+210)+2(2

3+214)+2(2
1+216)+1

)

+22
1+2

2

(
2(2

15+22)+2(2
13+24)+2(2

11+28)+2(2
9+26)+2(2

7+210)+2(2
5+212)+2(2

3+216)+2(2
1+214)+1

)
.

Direct Product Z2 ⊕ Z4. Now consider groups with four objects of order 4, and three objects of order 2.
Let a any object of order 4, so that a2 = b is a new object, as is a3 = c.

e a x1 x2 b x3 x4 x5

a x1 x2 e
x1 x2 e a
x2 e a x1

b
x3

x4

x5

The column of a can be completed. Let b an object not in {e, a, x1, x2}. The expression a ∗ b = x3 holds for
an element x3 that is not in {e, a, x1, x2, b}. The columns of x1 and x2 can be completed.

e a x1 x2 b x3 x4 x5

a x1 x2 e
x1 x2 e a
x2 e a x1

b x3 x4 x5

x3 x4 x5 b
x4 x5 b x3

x5 b x3 x4

84

Choose b such that it has order |b| = 2. This gives the row of b.

e a x1 x2 b x3 x4 x5

a x1 x2 e
x1 x2 e a
x2 e a x1

b x3 x4 x5 e a x1 x2

x3 x4 x5 b
x4 x5 b x3

x5 b x3 x4

Consider two different cases; the cases where b, x3 commute or not. Supposing they do not commute leads to
contradiction. It is a good exercise to find the contradiction in the least number of steps. For the commutative
case, the table is determined.

e a x1 x2 b x3 x4 x5

a x1 x2 e x3 x4 x5 b
x1 x2 e a x4 x5 b x3

x2 e a x1 x5 b x3 x4

b x3 x4 x5 e a x1 x2

x3 x4 x5 b a x1 x2 e
x4 x5 b x3 x1 x2 e a
x5 b x3 x4 x2 e a x1

This is the direct product group Z2 ⊕ Z4. To define this group, an object of order 4 is required, as given by
the equations a2 = x1, a ∗ x1 = x2, a ∗ x2 = e. Then, a second order object, b, that commutes with x3 = a ∗ b.
These conditions form the system of equations

a2 = x1

a3 = x2

a ∗ x2 = b2 = e

a ∗ b = x3

b ∗ x3 = x3 ∗ b

To find the canonical naming functions, write the table in terms of gi.

e g1 g2 g3 g4 g5 g6 g7
g1 g2 g3 e g5 g6 g7 g4
g2 g3 e g1 g6 g7 g4 g5
g3 e g1 g2 g7 g4 g5 g6
g4 g5 g6 g7 e g1 g2 g3
g5 g6 g7 g4 g1 g2 g3 e
g6 g7 g4 g5 g2 g3 e g1
g7 g4 g5 g6 g3 e g1 g2

(18)

Begin by assigning e = 7, and a = 6 for some second order object a. Choose an arbitrary object b = 5,
and make a ∗ b = x1 = 4. The group is commutative. Choose b of second order. This gives the table of K(4).
Maximization of the representation is guaranteed thus far.

e a b x1

a e x1 b
b x1 e a
x1 b a e

.

Add another arbitrary object from the remaining elements; c = 3, and a ∗ c = x2 = 2. The objects that c can
be chosen from are g1, g3, g5, g7. Then, the value of 1 is assigned to the element b ∗ c = c ∗ b = d = 1, and the

85

smallest value is assigned to x3 = a ∗ d = 0.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 e a d x3 c x2

x1 b a e x3 d x2 c
c x2 d x3

x2 c x3 d
d x3 c x2

x3 d x2 c

To continue maximizing the representation, choose a so that it is the square of some object, c2 = a. Therefore,
g2 = a = 7 because g2 is the only non trivial element that is square of another group element. This determines
the table. To find a canonical naming function choose b from two possible choices, g4, g6. Then choose c from four
possible choices, g1, g3, g5, g7. There is a total of eight canonical naming functions defining eight automorphisms
of Z2 ⊕ Z4.

(e, g2, g4, g6, g1, g3, g5, g7) (e, g2, g4, g6, g3, g1, g7, g5) (e, g2, g4, g6, g5, g7, g1, g3) (e, g2, g4, g6, g7, g5, g3, g1)
(e, g2, g6, g4, g1, g3, g7, g5) (e, g2, g6, g4, g3, g1, g5, g7) (e, g2, g6, g4, g5, g7, g3, g1) (e, g2, g6, g4, g7, g5, g1, g3)

These naming functions give the numeric table

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 3 2 4 5 6 7
0 1 2 3 5 4 7 6

with canonical representation -0cm

NZ2⊕Z4 = 22
15+2

2

(
2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
13+2

2

(
2(2

15+214)+2(2
13+216)+2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
11+2

2

(
2(2

15+212)+2(2
13+210)+2(2

11+216)+2(2
9+214)+2(2

7+24)+2(2
5+22)+2(2

3+28)+2(2
1+26)+1

)

+22
9+2

2

(
2(2

15+210)+2(2
13+212)+2(2

11+214)+2(2
9+216)+2(2

7+22)+2(2
5+24)+2(2

3+26)+2(2
1+28)+1

)

+22
7+2

2

(
2(2

15+28)+2(2
13+26)+2(2

11+24)+2(2
9+22)+2(2

7+214)+2(2
5+216)+2(2

3+210)+2(2
1+212)+1

)

+22
5+2

2

(
2(2

15+26)+2(2
13+28)+2(2

11+22)+2(2
9+24)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+22
3+2

2

(
2(2

15+24)+2(2
13+22)+2(2

11+28)+2(2
9+26)+2(2

7+210)+2(2
5+212)+2(2

3+214)+2(2
1+216)+1

)

+22
1+2

2

(
2(2

15+22)+2(2
13+24)+2(2

11+26)+2(2
9+28)+2(2

7+212)+2(2
5+210)+2(2

3+216)+2(2
1+214)+1

)
.

Quaternion Group Q8. Consider G with six objects of order 4. Let a the only object of second order.

86

e a b x1 c x2 d x3

a e
b x1 a
x1 b a
c x2 a
x2 c a
d x3 a
x3 d a

Find x1 ∗ b = e and b ∗ x1 = e, using associativity. It can also be verified that b ∗ a = b3 = a ∗ b. Using
associativity it can be found x1 ∗ a = b.

e a b x1 c x2 d x3

a e x1 b
b x1 a e
x1 b e a
c x2 a
x2 c a
d x3 a
x3 d a

Suppose, without loss of generality, b ∗ c = d.

e a b x1 c x2 d x3

a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a
x2 c x3 d a
d x3 x2 c a
x3 d c x2 a

Use associativity, as usual, to find

e a b x1 c x2 d x3

a e x1 b
b x1 a e
x1 b e a
c x2 d x3 a e
x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

.

It is true c ∗ a = c3 = a ∗ c; then, use associativity to find x2 ∗ a. In a similar fashion, d ∗ a = d3 = a ∗ d and
x3 ∗ a = d can be found.

e a b x1 c x2 d x3

a e x1 b x2 c x3 d
b x1 a e
x1 b e a
c x2 d x3 a e
x2 c x3 d e a
d x3 x2 c a e
x3 d c x2 e a

87

Next use c = x1 ∗ d to find c ∗ d = x1 ∗ (d ∗ d) = x1 ∗ a = b. The rest of the table is determined as usual.
Written in generic variables g1, g2, g3, g4, g5, g6, g7,

e g1 g2 g3 g4 g5 g6 g7
g1 e g3 g2 g5 g4 g7 g6
g2 g3 g1 e g7 g6 g4 g5
g3 g2 e g1 g6 g7 g5 g4
g4 g5 g6 g7 g1 e g3 g2
g5 g4 g7 g6 e g1 g2 g3
g6 g7 g5 g4 g2 g3 g1 e
g7 g6 g4 g5 g3 g2 e g1

.

This group was determined by the conditions of having one second order object, g1, and g1 = g22 = g23 = g24 =
g25 = g26 . Thus, the system of equations

g21 = e

g22 = g24 = (g1 ∗ g2)2 = (g1 ∗ g4)2 = (g2 ∗ g4)2 = (g4 ∗ g2)2 = g1.

determines the quaternion group Q8. To find the canonical naming functions, start with e = 7 and g1 = a = 6
because g1 is the only second order object. Then, choose a fourth order object to take the numerical value b = 5,
and x1 = a ∗ b = 4. This object, b, is chosen from six possible objects of fourth order. Then, choose another
object c = 3, and a ∗ c = x2 = 2, b ∗ c = d = 1, a ∗ d = x3 = 0. The element c is chosen from four remaining
group elements. All the fourth order objects are equivalent and there is a total of twenty four canonical naming
functions and automorphisms. The numeric table given by the canonical naming functions is

7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 6 7 0 1 3 2
4 5 7 6 1 0 2 3
3 2 1 0 6 7 4 5
2 3 0 1 7 6 5 4
1 0 2 3 5 4 6 7
0 1 3 2 4 5 7 6

.

The canonical representation is

NQ8 = 22
15+2

2

(
2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
13+2

2

(
2(2

15+214)+2(2
13+216)+2(2

11+210)+2(2
9+212)+2(2

7+26)+2(2
5+28)+2(2

3+22)+2(2
1+24)+1

)

+22
11+2

2

(
2(2

15+212)+2(2
13+210)+2(2

11+214)+2(2
9+216)+2(2

7+24)+2(2
5+22)+2(2

3+26)+2(2
1+28)+1

)

+22
9+2

2

(
2(2

15+210)+2(2
13+212)+2(2

11+216)+2(2
9+214)+2(2

7+22)+2(2
5+24)+2(2

3+28)+2(2
1+26)+1

)

+22
7+2

2

(
2(2

15+28)+2(2
13+26)+2(2

11+22)+2(2
9+24)+2(2

7+214)+2(2
5+216)+2(2

3+212)+2(2
1+210)+1

)

+22
5+2

2

(
2(2

15+26)+2(2
13+28)+2(2

11+24)+2(2
9+22)+2(2

7+216)+2(2
5+214)+2(2

3+210)+2(2
1+212)+1

)

+22
3+2

2

(
2(2

15+24)+2(2
13+22)+2(2

11+28)+2(2
9+26)+2(2

7+210)+2(2
5+212)+2(2

3+214)+2(2
1+216)+1

)

+22
1+2

2

(
2(2

15+22)+2(2
13+24)+2(2

11+26)+2(2
9+28)+2(2

7+212)+2(2
5+210)+2(2

3+216)+2(2
1+214)+1

)
.

Cyclic Group Z8. Finding the cyclic group is trivial, and it is defined by the equations a2 = b, b2 = c,
c2 = e. It has numeric table

88

7 6 5 4 3 2 1 0
6 5 4 3 2 1 0 7
5 4 3 2 1 0 7 6
4 3 2 1 0 7 6 5
3 2 1 0 7 6 5 4
2 1 0 7 6 5 4 3
1 0 7 6 5 4 3 2
0 7 6 5 4 3 2 1

The canonical representation of this group being

NZ8 = 22
15+2

2

(
2(2

15+216)+2(2
13+214)+2(2

11+212)+2(2
9+210)+2(2

7+28)+2(2
5+26)+2(2

3+24)+2(2
1+22)+1

)

+22
13+2

2

(
2(2

15+214)+2(2
13+212)+2(2

11+210)+2(2
9+28)+2(2

7+26)+2(2
5+24)+2(2

3+22)+2(2
1+216)+1

)

+22
11+2

2

(
2(2

15+212)+2(2
13+210)+2(2

11+28)+2(2
9+26)+2(2

7+24)+2(2
5+22)+2(2

3+216)+2(2
1+214)+1

)

+22
9+2

2

(
2(2

15+210)+2(2
13+28)+2(2

11+26)+2(2
9+24)+2(2

7+22)+2(2
5+216)+2(2

3+214)+2(2
1+212)+1

)

+22
7+2

2

(
2(2

15+28)+2(2
13+26)+2(2

11+24)+2(2
9+22)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+22
5+2

2

(
2(2

15+26)+2(2
13+24)+2(2

11+22)+2(2
9+216)+2(2

7+214)+2(2
5+212)+2(2

3+210)+2(2
1+28)+1

)

+22
3+2

2

(
2(2

15+24)+2(2
13+22)+2(2

11+216)+2(2
9+214)+2(2

7+212)+2(2
5+210)+2(2

3+28)+2(2
1+26)+1

)

+22
1+2

2

(
2(2

15+22)+2(2
13+216)+2(2

11+214)+2(2
9+212)+2(2

7+210)+2(2
5+28)+2(2

3+26)+2(2
1+24)+1

)
.

Groups of eight elements have been ordered; Z8 < Q8 < D8 < Z2 ⊕ Z4 < Z3
2.

B.4 |G| = 9

Direct Product Z3 ⊕ Z3. If |G| = 9 then |g| = 3 or |g| = 9 for any g ∈ G. Start by searching for groups with
all objects of order 3. The function ∗x1 is equal to the composition ∗a ◦ ∗a. Since |b| = 3, it is true b2 ̸= a. If
b2 = a, then b ∗ a = e which is a contradiction. Suppose b2 = c, without loss of generality.

e a x1 b x2 x3 c x4 x5

a x1 e
x1 e a
b x2 x3 c
x2 x3 b
x3 b x2

c x4 x5 e
x4 x5 c
x5 c x4

89

The rest of the rows of b and c are found using associativity.

e a x1 b x2 x3 c x4 x5

a x1 e
x1 e a
b x2 x3 c x4 x5 e a x1

x2 x3 b
x3 b x2

c x4 x5 e a x1 b x2 x3

x4 x5 c
x5 c x4

Check for a non abelian group. The first option for this is b ∗ a = x3, which implies x2 ∗ a = b. There is
a contradiction because |x2| = 3 implies x2 ∗ x4 = a. There is also a contradiction if b ∗ a = x4. This relation
implies x3 ∗ a = c. The last expression together with |x3| = 3 implies x3 ∗ x1 = a, which is a contradiction with
x2
1 = a. The supposition b ∗ a = x5 implies x2 ∗ a = c. This, together with x2 ∗ c = a is a contradiction with the

fact that |x2| = 3. It can be concluded b ∗ a = x2. Then it can be found x2 ∗ a = x3 and x3 ∗ a = b. Use the last
expression to find b ∗ x1 = x3.

e a x1 b x2 x3 c x4 x5

a x1 e x2 x3 b
x1 e a x3 b x2

b x2 x3 c x4 x5 e a x1

x2 x3 b
x3 b x2

c x4 x5 e a x1 b x2 x3

x4 x5 c
x5 c x4

Use the expression b = x2 ∗ x1 to find b ∗ x2 = x4. Then use b = x2 ∗ x1 to find b ∗ x4 = a.

e a x1 b x2 x3 c x4 x5

a x1 e x2 x3 b
x1 e a x3 b x2

b x2 x3 c x4 x5 e a x1

x2 x3 b x4 x5 c
x3 b x2 x5 c x4

c x4 x5 e a x1 b x2 x3

x4 x5 c a x1 e
x5 c x4 x1 e a

Finding the rest of the table is trivial. The result is the direct product group Z3⊕Z3. The system of equations
that defines this group is given by the relations

a2 = x1

b2 = c

a3 = b3 = e

a ∗ b = b ∗ a.

This group is determined by two commuting third order elements such that neither is the square of the other.

90

To find the canonical naming function of this group begin by expressing the table in generic variables gi.

e g1 g2 g3 g4 g5 g6 g7 g8
g1 g2 e g4 g5 g3 g7 g8 g6
g2 e g1 g5 g3 g4 g8 g6 g7
g3 g4 g5 g6 g7 g8 e g1 g2
g4 g5 g3 g7 g8 g6 g1 g2 e
g5 g3 g4 g8 g6 g7 g2 e g1
g6 g7 g8 e g1 g2 g3 g4 g5
g7 g8 g6 g1 g2 e g4 g5 g3
g8 g6 g7 g2 e g1 g5 g3 g4

Observe that the group is commutative. The group naming will be determined by choosing any two objects
a, b that satisfy the conditions mentioned above. Let e = 8 and choose an arbitrary a = 7. Then a2 = 6
maximizes the representation. The object a is chosen from eight possible choices. Next choose a second object
b = 5, and assign the name a∗ b = x2 = 4 and a∗x2 = 3. This object b can be chosen from six remaining objects.
Finally, assign the values b2 = c = 2, a ∗ c = x4 = 1, a ∗ x4 = x5 = 0. This has determined a total of forty eight
canonical naming functions and automorphisms of Z2

3. Choosing the two objects a, b determines the rest of the
naming values. This gives the numeric table

8 7 6 5 4 3 2 1 0
7 6 8 4 3 5 1 0 2
6 8 7 3 5 4 0 2 1
5 4 3 2 1 0 8 7 6
4 3 5 1 0 2 7 6 8
3 5 4 0 2 1 6 8 7
2 1 0 8 7 6 5 4 3
1 0 2 7 6 8 4 3 5
0 2 1 6 8 7 3 5 4

.

The canonical representation of this group is the number

NZ2
3

= 22
17+2

2

(
2(2

17+218)+2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1

)

+22
15+2

2

(
2(2

17+216)+2(2
15+214)+2(2

13+218)+2(2
11+210)+2(2

9+28)+2(2
7+212)+2(2

5+24)+2(2
3+22)+2(2

1+26)+1

)

+22
13+2

2

(
2(2

17+214)+2(2
15+218)+2(2

13+216)+2(2
11+28)+2(2

9+212)+2(2
7+210)+2(2

5+22)+2(2
3+26)+2(2

1+24)+1

)

+22
11+2

2

(
2(2

17+212)+2(2
15+210)+2(2

13+28)+2(2
11+26)+2(2

9+24)+2(2
7+22)+2(2

5+218)+2(2
3+216)+2(2

1+214)+1

)

+22
9+2

2

(
2(2

17+210)+2(2
15+28)+2(2

13+212)+2(2
11+24)+2(2

9+22)+2(2
7+26)+2(2

5+216)+2(2
3+214)+2(2

1+218)+1

)

+22
7+2

2

(
22

(217+28)+(215+212)+2(2
13+210)+2(2

11+22)+2(2
9+26)+2(2

7+24)+2(2
5+214)+2(2

3+218)+2(2
1+216)+1

)

+22
5+2

2

(
2(2

17+26)+2(2
15+24)+2(2

13+22)+2(2
11+218)+2(2

9+216)+2(2
7+214)+2(2

5+212)+2(2
3+210)+2(2

1+28)+1

)

+22
3+2

2

(
2(2

17+24)+2(2
15+22)+2(2

13+26)+2(2
11+216)+2(2

9+214)+2(2
7+218)+2(2

5+210)+2(2
3+28)+2(2

1+212)+1

)

+22
1+2

2

(
2(2

17+22)+2(2
15+26)+2(2

13+24)+2(2
11+214)+2(2

9+218)+2(2
7+216)+2(2

5+28)+2(2
3+212)+2(2

1+210)+1

)
.

Cyclic Group Z9. If |G| = 9, the objects of G have order 3 or 9. The only group with all objects of order
three has been found. Now consider the case where there exists at least one object of order 9. But, since the
group has nine objects, this must be the cyclic group, Z9. The cyclic group of nine objects is trivially given by

91

the numeric table

8 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 8
6 5 4 3 2 1 0 8 7
5 4 3 2 1 0 8 7 6
4 3 2 1 0 8 7 6 5
3 2 1 0 8 7 6 5 4
2 1 0 8 7 6 5 4 3
1 0 8 7 6 5 4 3 2
0 8 7 6 5 4 3 2 1

.

The canonical representation is

NZ9 = 22
17+2

2

(
2(2

17+218)+2(2
15+216)+2(2

13+214)+2(2
11+212)+2(2

9+210)+2(2
7+28)+2(2

5+26)+2(2
3+24)+2(2

1+22)+1

)

+22
15+2

2

(
2(2

17+216)+2(2
15+214)+2(2

13+212)+2(2
11+210)+2(2

9+28)+2(2
7+26)+2(2

5+24)+2(2
3+22)+2(2

1+218)+1

)

+22
13+2

2

(
2(2

17+214)+2(2
15+212)+2(2

13+210)+2(2
11+28)+2(2

9+26)+2(2
7+24)+2(2

5+22)+2(2
3+218)+2(2

1+216)+1

)

+22
11+2

2

(
2(2

17+212)+2(2
15+210)+2(2

13+28)+2(2
11+26)+2(2

9+24)+2(2
7+22)+2(2

5+218)+2(2
3+216)+2(2

1+214)+1

)

+22
9+2

2

(
2(2

17+210)+2(2
15+28)+2(2

13+26)+2(2
11+24)+2(2

9+22)+2(2
7+218)+2(2

5+216)+2(2
3+214)+2(2

1+212)+1

)

+22
7+2

2

(
22

(217+28)+(215+26)+2(2
13+24)+2(2

11+22)+2(2
9+218)+2(2

7+216)+2(2
5+214)+2(2

3+212)+2(2
1+210)+1

)

+22
5+2

2

(
2(2

17+26)+2(2
15+24)+2(2

13+22)+2(2
11+218)+2(2

9+216)+2(2
7+214)+2(2

5+212)+2(2
3+210)+2(2

1+28)+1

)

+22
3+2

2

(
2(2

17+24)+2(2
15+22)+2(2

13+218)+2(2
11+216)+2(2

9+214)+2(2
7+212)+2(2

5+210)+2(2
3+28)+2(2

1+26)+1

)

+22
1+2

2

(
2(2

17+22)+2(2
15+218)+2(2

13+216)+2(2
11+214)+2(2

9+212)+2(2
7+210)+2(2

5+28)+2(2
3+26)+2(2

1+24)+1

)
.

Comparing the two numbers, it is verified Z9 < Z2
3. It is becoming more clear how to find the canonical

representation, without having to calculate all the representations. But there are still several considerations
before attacking the general case.

The canonical block form of the symmetric group ∆4 is calculated, as another example.

92

B.5 ∆4

The multiplication table of ∆4 is exhibited for reference. The symbols gi are used for the elements of order 2,
and hi for the rest of the objects.

e g1 g2 g3 g4 g5 g6 g7 g8 g9 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

g1 e g4 g5 g2 g3 h2 h1 h4 h3 g7 g6 g9 g8 h6 h5 h12 h11 h14 h13 h8 h7 h10 h9

g2 g4 e h6 g1 h5 h1 h2 g9 g8 g6 g7 h4 h3 g5 g3 h11 h12 h10 h9 h7 h8 h14 h13

g3 g5 h5 e h6 g1 h10 h9 h8 h7 h14 h13 h12 h11 g2 g4 g9 g8 g7 g6 h4 h3 h2 h1

g4 g2 g1 h5 e h6 g7 g6 h3 h4 h2 h1 g8 g9 g3 g5 h8 h7 h13 h14 h12 h11 h9 h10

g5 g3 h6 g1 h5 e h13 h14 h11 h12 h9 h10 h7 h8 g4 g2 h3 h4 h1 h2 g8 g9 g6 g7
g6 h1 h2 h7 g7 h11 e g4 h13 h10 g1 g2 h9 h14 h8 h12 g3 h5 h3 g9 g5 h6 g8 h4

g7 h2 h1 h8 g6 h12 g4 e h9 h14 g2 g1 h13 h10 h7 h11 h5 g3 g8 h4 h6 g5 h3 g9
g8 h3 g9 h9 h4 h13 h11 h8 e g2 h7 h12 g1 g4 h14 h10 h1 g7 g3 h6 g6 h2 g5 h5

g9 h4 g8 h10 h3 h14 h7 h12 g2 e h11 h8 g4 g1 h13 h9 g6 h2 h6 g3 h1 g7 h5 g5
h1 g6 g7 h11 h2 h7 g2 g1 h14 h9 g4 e h10 h13 h12 h8 h6 g5 h4 g8 h5 g3 g9 h3

h2 g7 g6 h12 h1 h8 g1 g2 h10 h13 e g4 h14 h9 h11 h7 g5 h6 g9 h3 g3 h5 h4 g8
h3 g8 h4 h13 g9 h9 h12 h7 g4 g1 h8 h11 g2 e h10 h14 h2 g6 h5 g5 g7 h1 h6 g3
h4 g9 h3 h14 g8 h10 h8 h11 g1 g4 h12 h7 e g2 h9 h13 g7 h1 g5 h5 h2 g6 g3 h6

h5 h6 g3 g4 g5 g2 h14 h13 h7 h8 h10 h9 h11 h12 g1 e h4 h3 g6 g7 g9 g8 h1 h2

h6 h5 g5 g2 g3 g4 h9 h10 h12 h11 h13 h14 h8 h7 e g1 g8 g9 h2 h1 h3 h4 g7 g6
h7 h11 h8 g6 h12 h1 g9 h3 h5 g3 h4 g8 h6 g5 h2 g7 h10 h13 g4 e h14 h9 g2 g1
h8 h12 h7 g7 h11 h2 h4 g8 g3 h5 g9 h3 g5 h6 h1 g6 h14 h9 e g4 h10 h13 g1 g2
h9 h13 h14 g8 h10 h3 h6 g3 g7 h1 h5 g5 h2 g6 g9 h4 g2 e h8 h11 g4 g1 h12 h7

h10 h14 h13 g9 h9 h4 g3 h6 h2 g6 g5 h5 g7 h1 g8 h3 e g2 h12 h7 g1 g4 h8 h11

h11 h7 h12 h1 h8 g6 g8 h4 g5 h6 h3 g9 g3 h5 g7 h2 h9 h14 g1 g2 h13 h10 e g4
h12 h8 h11 h2 h7 g7 h3 g9 h6 g5 g8 h4 h5 g3 g6 h1 h13 h10 g2 g1 h9 h14 g4 e
h13 h9 h10 h3 h14 g8 g5 h5 g6 h2 g3 h6 h1 g7 h4 g9 g1 g4 h7 h12 e g2 h11 h8

h14 h10 h9 h4 h13 g9 h5 g5 h1 g7 h6 g3 g6 h2 h3 g8 g4 g1 h11 h8 g2 e h7 h12

(19)

It is noted, ahead of time, the canonical naming function does not assign the ten highest values to the set
{e, g1, g2, . . . , g9}. Some hi objects will have a higher numeric value than some gi. The smallest order of any non
trivial object is 2. It is obvious e = 23, 23 = a, 22 = b for two second order objects, a, b, that commute. The
possible pairs are:

{g1, g2} {g4, g6}
{g1, g4} {g4, g7}
{g2, g4} {g6, g7}
{g1, g3} {g2, g8}
{g1, g5} {g2, g9}
{g3, g5} {g8, g9}

(20)

Let a, b any of these pairs; the pairs can be used in either order because they are not ordered pairs. For
example, a naming can be a = g1, b = g2, or a = g2, b = g1. Any of the pairs above determine the naming
function e = 23, a = 22, b = 21, x1 = 20 with table

e a b x1

a e x1 b
b x1 e a
x1 b a e

.

To maximize the representation, find a, b, x1 such that {e, a, b, x1} forms the Klein 4-group. In fact, the triads

{g1, g2, g4} {g1, g3, g5} {g4, g6, g7} {g2, g8, g9} (21)

form the Klein 4-group. Given any one of these triads, it is unknown which objects will be a and b. For example,
using {g1, g2, g4}, who should be defined as a, b, x1? All the non trivial objects of K(4) are equivalent, so this
can not be decided yet.

93

Add a new object c1 and x2 = a ∗ c1.

e a b x1 c1 x2

a e x1 b
b x1 e a
x1 b a e
c1 x2

x2 c1

Another new object is needed also, c2 = b ∗ c1, then x3 = a ∗ c2.

e a b x1 c1 x2 c2 x3

a e x1 b
b x1 e a
x1 b a e
c1 x2 c2 x3

x2 c1 x3 c2
c2 x3 c1 x2

x3 c2 x2 c1

In summary, the canonical naming function will involve one of the Klein 4-subgroups {e, a, b, x1} of ∆4, and
an object c1 that commutes with a, if it should exist. This maximizes the table. There are several options to do
this. In fact, all the candidate naming functions admit an object c1 that commutes with a. This gives the table

e a b x1 c1 x2 c2 x3

a e x1 b x2 c1
b x1 e a
x1 b a e
c1 x2 c2 x3

x2 c1 x3 c2
c2 x3 c1 x2

x3 c2 x2 c1

determined by the equations

e = a2 = b2

a ∗ b = b ∗ a
a ∗ c1 = c1 ∗ a.

For the triads in (21), it is necessary to find an object c1 that commutes with a. For example, all the objects
in {g1, g2, g4} commute with at least one object not in that set. In the case of {g2, g8, g9}, only g2 commutes with
objects not in that list. This means if the triad {g2, g8, g9} is chosen, then a = g2. For {g1, g3, g5} it must be
true a = g1, and for {g4, g6, g7} the naming a = g4 must be given. The objects that commute with each second
order object gi are listed.

Comm(g1) = {g2, g4, g3, g5, h5, h6} Comm(g2) = {g1, g4, g8, g9, h3, h4} Comm(g3) = {g1, g5}
Comm(g4) = {g1, g2, g6, g7, h1, h2} Comm(g5) = {g1, g3} Comm(g6) = {g4, g7}

Comm(g7) = {g4, g6} Comm(g8) = {g2, g9} Comm(g9) = {g2, g8}
(22)

This information reduces the possible naming functions because a little more is known about a. The possible
naming functions are more than would be practical to list, but they are easy to describe. An object a ∈ {g1, g2, g4}
is needed, along with a second order object b that together determine the subgroup K(4). For example, if a = g4,
then one can choose b ∈ {g1, g2, g6, g7}; find a second order object that commutes with a = g4. In the case of
a = g1, one must choose b ∈ {g2, g4, g3, g5}. If a = g2 then b ∈ {g1, g4, g8, g9}. After determining the subgroup
K(4), an object c1 that commutes with a is needed. The expressions of (22) determine which combinations allow
c1. Start representing naming functions with finite sequences; in the form (a, b, x1, c1, x2, c2, x3). For example,

94

the naming function a = g4, b = g2, x1 = a ∗ b = g1, c1 = g7, x2 = a ∗ c1 = g6, c2 = b ∗ c1 = h1, x3 = a ∗ c2 = h2

is given by the expression (g4, g2, g1, g7, g6, h1, h2). It is already known a ∈ g1, g2, g4 for any of the triads giving
K(4). Choose a second order object, b, that commutes with a, and then choose an object c1 that also commutes
with a. All possible naming functions are listed below.

(g1, g2, g4, g3, g5, h5, h6) (g2, g1, g4, g8, g9, h3, h4) (g4, g1, g2, g6, g7, h1, h2)
(g1, g2, g4, g5, g3, h6, h5) (g2, g1, g4, g9, g8, h4, h3) (g4, g1, g2, g7, g6, h2, h1)
(g1, g2, g4, h5, h6, g3, g5) (g2, g1, g4, h3, h4, g8, g9) (g4, g1, g2, h1, h2, g6, g7)
(g1, g2, g4, h6, h5, g5, g3) (g2, g1, g4, h4, h3, g9, g8) (g4, g1, g2, h2, h1, g7, g6)

(g1, g4, g2, g3, g5, h6, h5) (g2, g4, g1, g8, g9, h4, h3) (g4, g2, g1, g6, g7, h2, h1)
(g1, g4, g2, g5, g3, h5, h6) (g2, g4, g1, g9, g8, h3, h4) (g4, g2, g1, g7, g6, h1, h2)
(g1, g4, g2, h5, h6, g5, g3) (g2, g4, g1, h3, h4, g9, g8) (g4, g2, g1, h1, h2, g7, g6)
(g1, g4, g2, h6, h5, g3, g5) (g2, g4, g1, h4, h3, g8, g9) (g4, g2, g1, h2, h1, g6, g7)

(g1, g3, g5, g2, g4, h6, h5) (g2, g8, g9, g1, g4, h4, h3) (g4, g6, g7, g1, g2, h2, h1)
(g1, g3, g5, g4, g2, h5, h6) (g2, g8, g9, g4, g1, h3, h4) (g4, g6, g7, g2, g1, h1, h2)
(g1, g3, g5, h5, h6, g4, g2) (g2, g8, g9, h3, h4, g4, g1) (g4, g6, g7, h1, h2, g2, g1)
(g1, g3, g5, h6, h5, g2, g4) (g2, g8, g9, h4, h3, g1, g4) (g4, g6, g7, h2, h1, g1, g2)

(g1, g5, g3, g2, g4, h5, h6) (g2, g9, g8, g1, g4, h3, h4) (g4, g7, g6, g1, g4, h1, h2)
(g1, g5, g3, g4, g2, h6, h5) (g2, g9, g8, g4, g1, h4, h3) (g4, g7, g6, g2, g1, h2, h1)
(g1, g5, g3, h5, h6, g2, g4) (g2, g9, g8, h3, h4, g1, g4) (g4, g7, g6, h1, h2, g1, g2)
(g1, g5, g3, h6, h5, g4, g2) (g2, g9, g8, h4, h3, g4, g1) (g4, g7, g6, h2, h1, g2, g1)

(23)

In (22) it can also be observed that given any choice of K(4) = {e, a, b, x1}, there is no group element g /∈ K(4)
that commutes with both a and b. That is to say, x1 = a ∗ b is the only element of ∆4 that commutes with a
and b. None of the candidate triads satisfy a ∗ c1 = c1 ∗ a and b ∗ c1 = c1 ∗ b simultaneously. The highest valued
object that can be in the position of c1 ∗ b, is x3. Each of the finite sequences above satisfies a ∗ c1 = c1 ∗ a and
x3 = c1 ∗ b. Any one of the naming functions in (23) will give the table

e a b x1 c1 x2 c2 x3

a e x1 b x2 c1
b x1 e a x3 c2
x1 b a e c2 x3

c1 x2 c2 x3

x2 c1 x3 c2
c2 x3 c1 x2

x3 c2 x2 c1

.

It is possible to choose c1 with the additional restraint |c1| = 2, maximizing the representation. The naming
functions

(g1, g2, g4, g3, g5, h5, h6) (g2, g1, g4, g8, g9, h3, h4) (g4, g1, g2, g6, g7, h1, h2)
(g1, g2, g4, g5, g3, h6, h5) (g2, g1, g4, g9, g8, h4, h3) (g4, g1, g2, g7, g6, h2, h1)

(g1, g4, g2, g3, g5, h6, h5) (g2, g4, g1, g8, g9, h4, h3) (g4, g2, g1, g6, g7, h2, h1)
(g1, g4, g2, g5, g3, h5, h6) (g2, g4, g1, g9, g8, h3, h4) (g4, g2, g1, g7, g6, h1, h2)

(g1, g3, g5, g2, g4, h6, h5) (g2, g8, g9, g1, g4, h4, h3) (g4, g6, g7, g1, g2, h2, h1)
(g1, g3, g5, g4, g2, h5, h6) (g2, g8, g9, g4, g1, h3, h4) (g4, g6, g7, g2, g1, h1, h2)

(g1, g5, g3, g2, g4, h5, h6) (g2, g9, g8, g1, g4, h3, h4) (g4, g7, g6, g1, g4, h1, h2)
(g1, g5, g3, g4, g2, h6, h5) (g2, g9, g8, g4, g1, h4, h3) (g4, g7, g6, g2, g1, h2, h1)

(24)

95

give the Dihedral Group
e a b x1 c1 x2 c2 x3

a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2

c1 x2 c2 x3 e a b x1

x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a

.

Add a new object d1 to the table above. The operation b ∗ d1 is a new object, d2. The operation c1 ∗ d1 is
also a new object, p1. Finally, p2 = b ∗ p1 to maximize the representation.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7

a e x1 b x2 c1 x3 c2
b x1 e a x3 c2 x2 c1
x1 b a e c2 x3 c1 x2

c1 x2 c2 x3 e a b x1

x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 p2 x7

x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6

p1 x6 p2 x7 d1 x4 d2 x5

x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4

How is d1 chosen? If there is another object(s) that commutes with a, it would be candidate to d1. However,
in each of the naming functions, there are no more objects that commute with a. The next largest value that
can be placed in d1 ∗ a, is d2 = b ∗ d1. Observe that only some of the naming functions above will satisfy this
condition. For example, the naming function a = g1, b = g3 is disqualified from being a canonical naming
function because there is no element d1 /∈ D8 such that d1 ∗ a = b ∗ d1. The only cases when such an object
d1 exists is if a, b ∈ {g1, g2, g4}. The easiest way to find the candidates for d1, is to compare the row of a and
the column of b. If the i-th object in the row of a coincides with the i-th object in the column of b, then the
i-th object on the first row (or first column) is a candidate for d1. For example, with the naming function
(g1, g2, g4, g3, g5, h5, h6), the candidates for d1 are the objects g6, g7, h1, h2, h9, h10, h13, h14. The candidates for
d1 are determined by a, b. If a = g1 and b = g3 there is no candidate for d1. If a = g1 and b = g4 the candidates
for d1 are g8, g9, h3, h4, h7, h8, h11, h12, etc. The naming functions that satisfy this condition are those that have
a, b in g1, g2, g4. More is known about the canonical naming function. The Klein group K(4) = {e, g1, g2, g4},
in any order, gives the first four objects of the naming function. Then, a second order object c1 that commutes
with a must be chosen. Then choose d1 so that b ∗ d1 = d1 ∗ a. Below, twelve naming functions are given. Each
of these has eight possible candidates for d1. There is a total of ninety-six possible naming functions.

(g1, g2, g4, g3, g5, h5, h6, d1, . . . , x7) (g2, g1, g4, g8, g9, h3, h4, d1, . . . , x7) (g4, g1, g2, g6, g7, h1, h2, d1, . . . , x7)
(g1, g2, g4, g5, g3, h6, h5, d1, . . . , x7) (g2, g1, g4, g9, g8, h4, h3, d1, . . . , x7) (g4, g1, g2, g7, g6, h2, h1, d1, . . . , x7)

(g1, g4, g2, g3, g5, h6, h5, d1, . . . , x7) (g2, g4, g1, g8, g9, h4, h3, d1, . . . , x7) (g4, g2, g1, g6, g7, h2, h1, d1, . . . , x7)
(g1, g4, g2, g5, g3, h5, h6, d1, . . . , x7) (g2, g4, g1, g9, g8, h3, h4, d1, . . . , x7) (g4, g2, g1, g7, g6, h1, h2, d1, . . . , x7)

(25)

It is possible to reduce the naming functions, further. Some of the candidate naming functions (not all) satisfy
d1 ∗ b = a ∗ d1, which maximizes the representation. Keep the naming functions that satisfy b ∗ d1 = d1 ∗ a and

96

d1 ∗ b = a ∗ d1, simultaneously. In the case of a = g1, b = g2 the candidates for d1 are reduced to g6, g7, h1, h2.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7

a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2
x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6

c1 x2 c2 x3 e a b x1

x2 c1 x3 c2 a e x1 b
c2 x3 c1 x2 x1 b a e
x3 c2 x2 c1 b x1 e a
d1 x4 d2 x5 p1 x6 p2 x7

x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6

p1 x6 p2 x7 d1 x4 d2 x5

x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4

The naming functions (a, b, x1, c1, x2, c2, x3, d1, x4, d2, x5, p1, x6, p2, x7) are given below.

(g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7, h7, h11, h8, h12) (g2, g1, g4, g8, g9, h3, h4, g6, h2, h1, g7, h13, h10, h9, h14)
(g1, g2, g4, g3, g5, h5, h6, g7, h2, h1, g6, h8, h12, h7, h11) (g2, g1, g4, g8, g9, h3, h4, g7, h1, h2, g6, h9, h14, h13, h10)
(g1, g2, g4, g3, g5, h5, h6, h1, g6, g7, h2, h11, h7, h8, h12) (g2, g1, g4, g8, g9, h3, h4, h1, g7, g6, h2, h14, h9, h13, h10)
(g1, g2, g4, g3, g5, h5, h6, h2, g7, g6, h1, h12, h8, h7, h11) (g2, g1, g4, g8, g9, h3, h4, h2, g6, g7, h1, h10, h13, h14, h9)

(g1, g2, g4, g5, g3, h6, h5, g6, h1, h2, g7, h11, h7, h12, h8) (g2, g1, g4, g9, g8, h4, h3, g6, h2, h1, g7, h10, h13, h14, h9)
(g1, g2, g4, g5, g3, h6, h5, g7, h2, h1, g6, h12, h8, h7, h11) (g2, g1, g4, g9, g8, h4, h3, g7, h1, h2, g6, h14, h9, h10, h13)
(g1, g2, g4, g5, g3, h6, h5, h1, g6, g7, h2, h7, h11, h8, h12) (g2, g1, g4, g9, g8, h4, h3, h1, g7, g6, h2, h9, h14, h13, h10)
(g1, g2, g4, g5, g3, h6, h5, h2, g7, g6, h1, h8, h12, h7, h11) (g2, g1, g4, g9, g8, h4, h3, h2, g6, g7, h1, h13, h10, h9, h14)

(g1, g4, g2, g3, g5, h5, h6, g8, h3, h4, g9, h9, h13, h10, h14) (g2, g4, g1, g8, g9, h3, h4, g3, h5, h6, g5, h8, h7, h11, h12)
(g1, g4, g2, g3, g5, h5, h6, g9, h4, h3, g8, h10, h14, h9, h13) (g2, g4, g1, g8, g9, h3, h4, g5, h6, h5, g3, h11, h12, h8, h7)
(g1, g4, g2, g3, g5, h5, h6, h3, g8, g9, h4, h13, h9, h14, h10) (g2, g4, g1, g8, g9, h3, h4, h5, g3, g5, h6, h7, h8, h12, h11)
(g1, g4, g2, g3, g5, h5, h6, h4, g9, g8, h3, h14, h10, h9, h13) (g2, g4, g1, g8, g9, h3, h4, h6, g5, g3, h5, h12, h11, h7, h8)

(g1, g4, g2, g5, g3, h6, h5, g8, h3, h4, g9, h13, h9, h14, h10) (g2, g4, g1, g9, g8, h4, h3, g3, h5, h6, g5, h7, h8, h12, h11)
(g1, g4, g2, g5, g3, h6, h5, g9, h4, h3, g8, h14, h10, h13, h9) (g2, g4, g1, g9, g8, h4, h3, g5, h6, h5, g3, h12, h11, h7, h8)
(g1, g4, g2, g5, g3, h6, h5, h3, g8, g9, h4, h9, h13, h10, h14) (g2, g4, g1, g9, g8, h4, h3, h5, g3, g5, h6, h8, h7, h11, h12)
(g1, g4, g2, g5, g3, h6, h5, h4, g9, g8, h3, h10, h14, h9, h13) (g2, g4, g1, g9, g8, h4, h3, h6, g5, g3, h5, h11, h12, h8, h7)

97

(g4, g1, g2, g6, g7, h1, h2, g8, h4, h3, g9, h11, h8, h7, h12)
(g4, g1, g2, g6, g7, h1, h2, g9, h3, h4, g8, h7, h12, h11, h8)
(g4, g1, g2, g6, g7, h1, h2, h3, g9, g8, h4, h12, h7, h8, h11)
(g4, g1, g2, g6, g7, h1, h2, h4, g8, g9, h3, h8, h11, h12, h7)

(g4, g1, g2, g7, g6, h2, h1, g8, h4, h3, g9, h8, h11, h12, h7)
(g4, g1, g2, g7, g6, h2, h1, g9, h3, h4, g8, h12, h7, h8, h11)
(g4, g1, g2, g7, g6, h2, h1, h3, g9, g8, h4, h7, h12, h11, h8)
(g4, g1, g2, g7, g6, h2, h1, h4, g8, g9, h3, h11, h8, h7, h12)

(g4, g2, g1, g6, g7, h1, h2, g3, h6, h5, g5, h10, h9, h13, h14)
(g4, g2, g1, g6, g7, h1, h2, g5, h5, h6, g3, h13, h14, h10, h9)
(g4, g2, g1, g6, g7, h1, h2, h5, g5, g3, h6, h14, h13, h9, h10)
(g4, g2, g1, g6, g7, h1, h2, h6, g3, g5, h5, h9, h10, h14, h13)

(g4, g2, g1, g7, g6, h2, h1, g3, h6, h5, g5, h9, h10, h14, h13)
(g4, g2, g1, g7, g6, h2, h1, g5, h5, h6, g3, h14, h13, h9, h10)
(g4, g2, g1, g7, g6, h2, h1, h5, g5, g3, h6, h13, h14, h10, h9)
(g4, g2, g1, g7, g6, h2, h1, h6, g3, g5, h5, h10, h9, h13, h14)

(26)

One can start to suspect what objects might turn out to be equivalent. For example, it is quite clear g1, g2, g4
might probably be equivalent, and also g3, g5, and g6, g7, and h1, h2, etc. The naming functions of (26) all give
a new object d1 ∗ c1. For example, in the naming function (g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7), there is a new
object d1 ∗ c1 = g6 ∗ g3 = h10. Including this new object, q1 = d1 ∗ c1, gives another new object r1 = c1 ∗ q1. The
object r1 = c1 ∗ q1 must be added, along with x10 = a ∗ r1, r2 = b ∗ r1, x11 = a ∗ r2.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11

a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10

x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7

x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6

x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7

x4 d1 x5 d2 x6 p1 x7 p2
d2 x5 d1 x4 x7 p2 x6 p1
x5 d2 x4 d1 p2 x7 p1 x6

p1 x6 p2 x7 d1 x4 d2 x5

x6 p1 x7 p2 x4 d1 x5 d2
p2 x7 p1 x6 x5 d2 x4 d1
x7 p2 x6 p1 d2 x5 d1 x4

q1 x8 q2 x9 r1 x10 r2 x11

x8 q1 x9 q2 x10 r1 x11 r2
q2 x9 q1 x8 x11 r2 x10 r1
x9 q2 x8 q1 r2 x11 r1 x10

r1 x10 r2 x11 q1 x8 q2 x9

x10 r1 x11 r2 x8 q1 x9 q2
r2 x11 r1 x10 x9 q2 x8 q1
x11 r2 x10 r1 q2 x9 q1 x8

.

98

To maximize the representation, take the naming functions that satisfy |d1| = 2.

(g1, g2, g4, g3, g5, h5, h6, g6, h1, h2, g7, h7, h11, h8, h12, h10, h14, h13, h9, g9, h4, g8, h3)
(g1, g2, g4, g3, g5, h5, h6, g7, h2, h1, g6, h8, h12, h7, h11, h9, h13, h14, h10, g8, h3, g9, h4)
(g1, g2, g4, g5, g3, h6, h5, g6, h1, h2, g7, h11, h7, h12, h8, h13, h9, h10, h14, g8, h3, g9, h4)
(g1, g2, g4, g5, g3, h6, h5, g7, h2, h1, g6, h12, h8, h7, h11, h14, h10, h13, h9, g9, h4, g8, h3)
(g1, g4, g2, g3, g5, h5, h6, g8, h3, h4, g9, h9, h13, h10, h14, h8, h12, h11, h7, g7, h2, g6, h1)
(g1, g4, g2, g3, g5, h5, h6, g9, h4, h3, g8, h10, h14, h9, h13, h7, h11, h12, h8, g6, h1, g7, h2)
(g1, g4, g2, g5, g3, h6, h5, g8, h3, h4, g9, h13, h9, h14, h10, h11, h7, h8, h12, g6, h1, g7, h2)
(g1, g4, g2, g5, g3, h6, h5, g9, h4, h3, g8, h14, h13, h10, h9, h12, h8, h7, h11, g7, h2, g6, h1)

(g2, g1, g4, g8, g9, h3, h4, g6, h2, h1, g7, h13, h10, h9, h14, h11, h12, h7, h8, g5, h6, g3, h5)
(g2, g1, g4, g8, g9, h3, h4, g7, h1, h2, g6, h9, h14, h13, h10, h8, h7, h12, h11, g3, h5, g5, h6)
(g2, g1, g4, g9, g8, h4, h3, g6, h2, h1, g7, h10, h13, h14, h9, h7, h8, h11, h12, g3, h5, g5, h6)
(g2, g1, g4, g9, g8, h4, h3, g7, h1, h2, g6, h14, h9, h10, h13, h12, h11, h8, h7, g5, h6, g3, h5)
(g2, g4, g1, g8, g9, h3, h4, g3, h5, h6, g5, h8, h7, h11, h12, h9, h14, h10, h13, g7, h1, g6, h2)
(g2, g4, g1, g8, g9, h3, h4, g5, h6, h5, g3, h11, h12, h8, h7, h13, h10, h14, h9, g6, h2, g7, h1)
(g2, g4, g1, g9, g8, h4, h3, g3, h5, h6, g5, h7, h8, h12, h11, h10, h13, h9, h14, g6, h2, g7, h1)
(g2, g4, g1, g9, g8, h4, h3, g5, h6, h5, g3, h12, h11, h7, h8, h14, h9, h13, h10, g7, h1, g6, h2)

(g4, g1, g2, g6, g7, h1, h2, g8, h4, h3, g9, h11, h8, h7, h12, h13, h14, h9, h10, g5, h5, g3, h6)
(g4, g1, g2, g6, g7, h1, h2, g9, h3, h4, g8, h7, h12, h11, h8, h10, h9, h14, h13, g3, h6, g5, h5)
(g4, g1, g2, g7, g6, h2, h1, g8, h4, h3, g9, h8, h11, h12, h7, h9, h10, h13, h14, g3, h6, g5, h5)
(g4, g1, g2, g7, g6, h2, h1, g9, h3, h4, g8, h12, h7, h8, h11, h14, h13, h10, h9, g5, h5, g3, h6)
(g4, g2, g1, g6, g7, h1, h2, g3, h6, h5, g5, h10, h9, h13, h14, h7, h12, h8, h11, g9, h3, g8, h4)
(g4, g2, g1, g6, g7, h1, h2, g5, h5, h6, g3, h13, h14, h10, h9, h11, h8, h7, h12, g8, h4, g9, h3)
(g4, g2, g1, g7, g6, h2, h1, g3, h6, h5, g5, h9, h10, h14, h13, h8, h11, h7, h14, g8, h4, g9, h3)
(g4, g2, g1, g7, g6, h2, h1, g5, h5, h6, g3, h14, h13, h9, h10, h12, h7, h11, h8, g9, h3, g8, h4)

These naming functions give the table

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11

a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10

x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7

x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6

x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7 e a b x1 c1 x2 c2 x3

x4 d1 x5 d2 x6 p1 x7 p2 b x1 e a x3 c2 x2 c1
d2 x5 d1 x4 x7 p2 x6 p1 a e x1 b x2 c1 x3 c2
x5 d2 x4 d1 p2 x7 p1 x6 x1 b a e c2 x3 c1 x2

p1 x6 p2 x7 d1 x4 d2 x5 e a b x1 c1 x2 c2 x3

x6 p1 x7 p2 x4 d1 x5 d2 b x1 e a x3 c2 x2 c1
p2 x7 p1 x6 x5 d2 x4 d1 x1 b a e c2 x3 c1 x2

x7 p2 x6 p1 d2 x5 d1 x4 a e x1 b x2 c1 x3 c2
q1 x8 q2 x9 r1 x10 r2 x11 c1 x2 c2 x3 e a b x1

x8 q1 x9 q2 x10 r1 x11 r2 c2 x3 c1 x2 x1 b a e
q2 x9 q1 x8 x11 r2 x10 r1 x2 c1 x3 c2 a e x1 b
x9 q2 x8 q1 r2 x11 r1 x10 x3 c2 x2 c1 b x1 e a
r1 x10 r2 x11 q1 x8 q2 x9 c1 x2 c2 c1 e a b x1

x10 r1 x11 r2 x8 q1 x9 q2 c2 x3 c1 x2 x1 b a e
r2 x11 r1 x10 x9 q2 x8 q1 x3 c2 x2 c1 b x1 e a
x11 r2 x10 r1 q2 x9 q1 x8 x2 c1 x3 c2 a e x1 b

.

99

At this point, No more information can be added to the table. An observation is made to complete the table.
All the naming functions satisfy d1 ∗ p1 = r1. With this, the table is finished.

e a b x1 c1 x2 c2 x3 d1 x4 d2 x5 p1 x6 p2 x7 q1 x8 q2 x9 r1 x10 r2 x11

a e x1 b x2 c1 x3 c2 d2 x5 d1 x4 x7 p2 x6 p1 q2 x9 q1 x8 x11 r2 x10 r1
b x1 e a x3 c2 x2 c1 x4 d1 x5 d2 x6 p1 x7 p2 x9 q2 x8 q1 r2 x11 r1 x10

x1 b a e c2 x3 c1 x2 x5 d2 x4 d1 p2 x7 p1 x6 x8 q1 x9 q2 x10 r1 x11 r2
c1 x2 c2 x3 e a b x1 q1 x8 q2 x9 r1 x10 r2 x11 d1 x4 d2 x5 p1 x6 p2 x7

x2 c1 x3 c2 a e x1 b q2 x9 q1 x8 x11 r2 x10 r1 d2 x5 d1 x4 x7 p2 x6 p1
c2 x3 c1 x2 x1 b a e x8 q1 x9 q2 x10 r1 x11 r2 x5 d2 x4 d1 p2 x7 p1 x6

x3 c2 x2 c1 b x1 e a x9 q2 x8 q1 r2 x11 r1 x10 x4 d1 x5 d2 x6 p1 x7 p2
d1 x4 d2 x5 p1 x6 p2 x7 e a b x1 c1 x2 c2 x3 r1 x10 r2 x11 q1 x8 q2 x9

x4 d1 x5 d2 x6 p1 x7 p2 b x1 e a x3 c2 x2 c1 r2 x11 r1 x10 x9 q2 x8 q1
d2 x5 d1 x4 x7 p2 x6 p1 a e x1 b x2 c1 x3 c2 x11 r2 x10 r1 q2 x9 q1 x8

x5 d2 x4 d1 p2 x7 p1 x6 x1 b a e c2 x3 c1 x2 x10 r1 x11 r2 x8 q1 x9 q2
p1 x6 p2 x7 d1 x4 d2 x5 r1 x10 r2 x11 q1 x8 q2 x9 e a b x1 c1 x2 c2 x3

x6 p1 x7 p2 x4 d1 x5 d2 r2 x11 r1 x10 x9 q2 x8 q1 b x1 e a x3 c2 x2 c1
p2 x7 p1 x6 x5 d2 x4 d1 x10 r1 x11 r2 x8 q1 x9 q2 x1 b a e c2 x3 c1 x2

x7 p2 x6 p1 d2 x5 d1 x4 x11 r2 x10 r1 q2 x9 q1 x8 a e x1 b x2 c1 x3 c2
q1 x8 q2 x9 r1 x10 r2 x11 c1 x2 c2 x3 e a b x1 p1 x6 p2 x7 d1 x4 d2 x5

x8 q1 x9 q2 x10 r1 x11 r2 c2 x3 c1 x2 x1 b a e p2 x7 p1 x6 x5 d2 x4 d1
q2 x9 q1 x8 x11 r2 x10 r1 x2 c1 x3 c2 a e x1 b x7 p2 x6 p1 d2 x5 d1 x4

x9 q2 x8 q1 r2 x11 r1 x10 x3 c2 x2 c1 b x1 e a x6 p1 x7 p2 x4 d1 x5 d2
r1 x10 r2 x11 q1 x8 q2 x9 p1 x6 p2 x7 d1 x4 d2 x5 c1 x2 c2 x3 e a b x1

x10 r1 x11 r2 x8 q1 x9 q2 p2 x7 p1 x6 x5 d2 x4 d1 c2 x3 c1 x2 x1 b a e
r2 x11 r1 x10 x9 q2 x8 q1 x6 p1 x7 p2 x4 d1 x5 d2 x3 c2 x2 c1 b x1 e a
x11 r2 x10 r1 q2 x9 q1 x8 x7 p2 x6 p1 d2 x5 d1 x4 x2 c1 x3 c2 a e x1 b

.

The canonical naming functions of the symmetry group ∆4 have been found, and they provide the twenty
four automorphisms of ∆4. Equivalent objects of the group are identified. The equivalence classes of objects are

{e}
{g1, g2, g4}

{g3, g5, g6, g7, g8, g9}
{h1, h2, h3, h4, h5, h6}

{h7, h8, h9, h10, h11, h12, h13, h14}

The canonical representation is easily obtained from this table in numeric form. To verify isomorphism of
two groups, find the numeric tables and these have to coincide.

100

